Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Research was carried out on a newly manufactured particleboard (PB) containing carbon nanotubes (CNTs) to determine the effect of the CNTs on physical, mechanical and combustion properties of the board. The experiment consisted of two stages. In the first, wood particles were treated with an aqueous suspension of CNTs (0.2% w/w) and sodium dodecylbenzenesulfonate (0.2% w/w) as a dispersant. After drying to constant weight, a modified form of the ASTM E69 method was used to determine the effectiveness of fire protection provided by CNT-modified wood chips. The rate of wood decomposition decreased significantly, and the time to complete combustion increased from 18 to 22.5 min for the reference and CNT-modified wood particles respectively. In the second stage of the experiment a particleboard bonded with phenyl-formaldehyde resin was produced, in which the particles were modified with CNTs using the method described in the first stage. Selected physical and mechanical properties of the final board were determined. Samples of the board were tested using a mass loss calorimeter in accordance with the ISO 13927 standard, and mechanical tests were performed by applicable standard methods. However, no significant improvement in the properties of the PB were observed.
Słowa kluczowe
Rocznik
Tom
Strony
93--105
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Faculty of Technical Physics, Poznan University of Technology, Poznan, Poland
autor
- Faculty of Wood Technology, Poznań University of Life Sciences, Poznan, Poland
autor
- Faculty of Wood Technology, Poznań University of Life Sciences, Poznan, Poland
autor
- Faculty of Wood Technology, Poznań University of Life Sciences, Poznan, Poland
autor
- Faculty of Mechatronics, Warsaw University of Technology, Warsaw, Poland
autor
- Faculty of Technical Physics, Poznan University of Technology, Poznan, Poland
Bibliografia
- Anderson R.E., Guan J., Ricard M., Dubey G., Su J., Lopinski G., Dorris G., Bourne O., Simard B. [2010]: Multifunctional single-walled carbon nanotube-cellulose composite paper. Journal of Materials Chemistry 20: 2400-2407
- Berber S., Kwon Y.-K., Tománek D. [2000]: Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters 84: 4613-4616
- Boruszewski P., Borysiuk P., Jaskółowski W., Święcki A., Mamiński M., Jenczyk--Tołłoczko I. [2011]: Influence of flakes impregnation with salt flame retardants on selected physical and mechanical properties of OSB. Annals of Warsaw University of Life Sciences – SGGW, Forestry and Wood Technology [73]: 147-152
- Candan Z., Akbulut T. [2015]: Physical and mechanical properties of nanoreinforced particleboard composites. Maderas. Ciencia y Tecnologia 17 [2]: 319-334
- Cassell M., Raymakers J., Kong J., Dai H. [1999]: Large scale CVD synthesis of single-walled carbon nanotubes. The Journal of Physical Chemistry B 103: 6484-6492
- Cipiriano B.H., Kashiwagi T., Raghavan S.R., Yang Y., Grulke E., Yamamoto K., Shields J.R., Douglas J.F. [2007]: Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 48: 6086-6096
- Chhowalla M., Teo K., Ducati C., Rupesinghe N.L., Amaratunga G., Ferrari A.C., Roy D., Robertson J., Milne W.I. [2001]: Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. Journal of Applied Physics 90 [10]: 5308-5317
- Dong Y.M., Yan Y.T., Zhang S.F., Li J.Z., Wang J.J. [2015]: Flammability and physical-mechanical properties assessment of wood treated with furfuryl alcohol and nano-SiO2.European Journal of Wood and Wood Products 73 [4]: 457-464
- Dukarska D., Bartkowiak M. [2016]: The effect of organofunctional nanosilica on the cross-linking process and thermal resistance of UF resin. Journal of Polymer Research 23 [8]: 1-8
- Dukarska D., Czarnecki R. [2016]: Fumed silica as filler for MUPF resin in the process of manufacturing water-resistance plywood. European Journal of Wood and Wood Products 74 [1]: 5-14
- Dukarska D., Cofta G., Krzykowska J. [2017]: Resistance of selected wood-based materials glued with nano-SiO2/UF resin to A. niger infestation. Annals of Warsaw University of Life Science – SGGW, Forest and Wood Technology 97: 114-117
- Farsheh A.T., Talaeipour M., Hemmasi A.H., Khademieslam H., Ghasemi I. [2011]: Investigation on the mechanical and morphological properties of foamed nanocomposites based on wood flour/PVC/multi-walled carbon nanotube. BioResources 6: 841-852
- Fu X., Zhang C., Liu T., Liang R., Wang B. [2010]: Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites. Nanotechnology 21: 235701-235708
- Gao W., Du G.B. [2015]: Physico-mechanical properties of plywood bonded by nano cupric oxide (CuO) modified PF resins against subterranean termites. Maderas. Ciencia y Tecnologia 17 [1]: 129-138
- Gashti M., Almasian A. [2013]: UV radiation induced flame retardant cellulose fiber by using polyvinylphosphonic acid/carbon nanotube composite coating. Composites Part B: Engineering 45: 282-289
- Grześkowiak W.Ł., Wiśniewski T. [2010]: Fire safety of fireplaces – wood based products: speed of charring. Annals of Warsaw University of Life Sciences – SGGW, Forestry and Wood Technology [71]: 229-234
- Hankalin V., Ahonen T., Raiko R. [2009]: On thermal properties of a pyrolysing wood particle. In Finnish-Swedish Flame Days 2009, January 28-29, 2009, Naantali, Finland. 2009. p. 16
- Kashiwagi T. Grukle E., Hilding J, Groth K., Harris R., Butler K, Shields J., Kharaechenki S., Douglas J. [2004]: Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45: 4227-4239
- Kashiwagi T., Du F., Winey K.I., Groth K.M., Shields J.R., Bellayer S.P., Kim H., Douglas J.F. [2005]: Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: Effects of nanotube dispersion and concentration. Polymer 46 [2]: 471-481
- Kim P., Shi L., Majumdar A., McEuen P.L. [2001]: Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters 87: 215502
- Kozłowski R., Władyka-Przybylak M. [2001]: Natural polymers, wood and lignocellulosic materials in Fire Retardant Materials. Edited by: A.R. Horrocks and D. Price ISBN: 978-1-85573-419-7: 293-317
- Kumar A., Gupta A., Sharma K.V., Nasir M. [2013]: Use of aluminum oxide nanoparticles in wood composites to enhance the heat transfer during hot-pressing. European Journal of Wood and Wood Products 71 [2]: 193-198
- Lei L.H., Du G., Pizzi A., Celzard A. [2008]: Influence of nanoclay on urea-formaldehyde adhesives for wood adhesives and its model. Journal of Applied Polymer Science 109:2442-2451
- Lin T., Bajpai V., Ji T., Dai L. [2003]: Chemistry of carbon nanotubes. Australian Journal of Chemistry 56: 635-651
- Liu Y., Zhu X. [2014]: Measurement of formaldehyde and VOCs emissions from wood-based panels with nanomaterial-added melamine-impregnated paper. Construction and Building Materials 66: 132-137
- Mačiulaitis R., Praniauskas V. [2010]: Fire tests on wood products subjected to different heat fluxes. Journal of Civil Engineering and Management 16: 484-490
- Marzbani P., Afrouzi Y.M., Omidvar A. [2015]: The effect of nano-zinc oxide on particleboard decay resistance. Maderas. Ciencia y Tecnologia 17 [1]: 63-68
- Nowaczyk-Organista M. [2009]: Protection of birch and walnut wood colour from the effect of exposure to light using ultra-fine zinc white. Drewno 52 [181]: 19-41
- Park B.-D., Kadla J.F. [2012]: Thermal degradation kinetics of resole phenol-formaldehyde resin/milti-walles carbon nanotubes/cellulose nanocomposite. Thermochimica Acta 540:107-115
- Roumeli E., Papadopoulou E., Pavlidou E., Vourlias G., Bikiaris D., Paraskevopoulos K.M., Chrissafis K. [2012]: Synthesis, characterization and thermal analysis of urea-formaldehyde/nanoSiO2 resin. Thermochimica Acta 527: 33-39
- Rangavar H., Fard H.M.S. [2015]: The effect of nanocopper additions in a urea-formaldehyde adhesive on the physical and mechanical properties of particleboard manufactured from date palm waste. Mechanics of Composite Materials 51 [1]: 119-126
- Salari A., Tabarsa T., Khazaeian A., Saraeian A. [2013]: Improving some of applied properties of oriented strand board (OSB) made from underutilized low quality paulownia (Paulownia fortunie) wood employing nano-SiO2. Industrial Crops and Products 42: 1-9
- Schartel B., Hull T.R. [2007]: Development of fire-retarded materials – Interpretation of cone calorimeter data. Fire and Materials 31: 327-354
- Soltani A., Hosseinpourpia R., Adamopoulos S., Taghiyari H.R., Ghaffari E. [2016]: Effects of heat-treatment and nano-wollastonite impregnation on fire properties of solid wood. BioResources 11 [4]: 8953-8967
- Taghiyari H.R., Rassam G., Ahmadi-Davazdah Emam K. [2016]: Effects of densification on untreated and nano-aluminum-oxide impregnated poplar wood. Journal of Forestry Research 28 [2]: 403-410
- Taghiyari H.R., Rangavar H., Farajpour Bibalan O. [2011]: Effect of nano-silver on reduction of hot-pressing time and improvement in physical and mechanical properties of particleboard. Bioresources 6: 4067-4075
- Taghiyari H.R., Farajpour Bibalan O. [2013]: Effect of copper nanoparticles on permeability, physical and mechanical properties of particleboard. European Journal of Wood and Wood Products 71 [1]: 69-77
- Taghiyari H.R., Mobini K., Sarvari Samadi Y., Doosti Z., Karimi F., Asghari M., Jahangiri A., Nouri P. [2013]: Effects of nano-wollastonite on thermal conductivity coefficient of medium-density fiberboard. Journal of Nanomaterials and Molecular Nanotechnology 2: 1-5
- Tasis D., Tagmatarchis N., Bianco A., Prato M. [2006]: Chemistry of carbon nanotubes. Chemical Reviews 106: 1105-1136
- Treacy M., Ebbesen T.W., Gibson J.M. [1996]: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381: 678-680
- Zhang C., Smith G.D. [2010]: Effect of nanoclay addition to phenol – formaldehyde resin on the permeability of oriented strand lumber. Wood Fiber Science 42 [4]: 1-3
- Veigel S., Rathke J., Weigl M., Gindl-Altmutter W. [2012]: Particle board and oriented strand board prepared with nanocellulose-reinforced adhesive. Journal Nanomaterials 158503: 1-8
- List of standards:
- ASTM E69 Standard test method for combustible properties of treated wood by the fire-tube apparatus
- EN 310:1993 Wood based panels. Determination of modulus of elasticity in bending and of bending strength. European Committee for Standardization, Brussels
- EN 317:1993 Particleboards and fiberboards. Determination of swelling in thickness after immersion in water. European Committee for Standardization, Brussels
- EN 319:1993 Determination of tensile strength perpendicular to the plane of the board. European Committee for Standardization, Brussels
- EN 1087-1:1995 Particleboards – Determination of moisture resistance – Boil test ISO 13927:2015 Plastics – Simple heat release test using a conical radiant heater and a thermopile detector
- ISO 5660 Cone calorimeter, heat release and smoke production
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c22876b8-9059-4494-9a01-80c675540a30