PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Tofu wastewater treatment innovation: Effectiveness of natural zeolite as an adsorbent in the ammonium adsorption process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Waste from tofu production contains high ammonia levels in the form of ammonium, which can pollute the environment when discharged without prior treatment. Using natural zeolite as an adsorbent in treating ammonium contained in tofu waste is expected to effectively reduce the ammonium content, as natural zeolite has a high adsorption capacity. This research aims to analyze the ability of natural zeolite from Bayah, Indonesia, as an adsorbent in reducing ammonium content in tofu waste by integrating factors that influence the adsorption process such as adsorbent dose, stirring speed, adsorbent particle size, and contact time, to obtain optimal adsorption operating conditions. To achieve the research objectives, observations were conducted over a wide range: adsorbent sizes of 40–100 mesh, adsorbent mass of 1–5 grams/100 ml waste, stirring speeds of 400 and 600 rpm, and contact time of 60 minutes. The research results show that reducing the adsorbent size (40–100 mesh) and increasing the adsorbent dose (1–5 grams) has a positive impact on improving the percentage of ammonium removal achieved, but increasing the stirring speed (from 400 to 700 rpm) has the opposite effect, resulting in a decrease in the percentage of ammonium removal produced. Optimum conditions obtained at a mass of 5 grams, zeolite size of 100 mesh, and stirring speed of 400 rpm for 60 minutes, resulting in an ammonium removal percentage of 70.13%. The results of this research show that the use of natural zeolite has good prospects as an adsorbent in tofu waste treatment, although it still needs to be improved so that the percentage of ammonium removal approaches 100%.
Twórcy
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Jl. Jendral Sudirman KM. 3, Cilegon, Banten, 42435, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Jl. Jendral Sudirman KM. 3, Cilegon, Banten, 42435, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Jl. Jendral Sudirman KM. 3, Cilegon, Banten, 42435, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Jl. Jendral Sudirman KM. 3, Cilegon, Banten, 42435, Indonesia
  • Mining Engineering, Faculty of Science and Technology, Universitas Nusa Cendana, Jln. Undana, Kelapalima, Kupang, East Nusa Tenggara, 85228, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Gunung pati, Semarang, Central Java, 50229, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani KM. 36 Banjarbaru, South Kalimantan, 70714, Indonesia
  • School of Envinronment, Faculty of Arts and Science, University of Toronto, 33 Willcocks Street, Suite 1016V, Toronto, ON, M5S 3E8 Canada
Bibliografia
  • 1. Ahmed, S., Choudhury, T. R., Alam, M. Z., & Nurnabi, M. (2023). Adsorption of Cu (II) and Cd (II) with graphene based adsorbent: adsorption kinetics, isotherm and thermodynamic studies. Desalination and Water Treatment, 285, 167–179. https://doi.org/10.5004/dwt.2023.29290
  • 2. Al Ashik, A., Rahman, M. A., Halder, D., & Hossain, M. M. (2023). Removal of methylene blue from aqueous solution by coconut coir dust as a low-cost adsorbent. Applied Water Science, 13(3), 81. https://doi.org/10.1007/s13201-023-01887-5
  • 3. Alsharief, H. H., Alatawi, N. M., Al-Bonayan, A. M., Alrefaee, S. H., Saad, F. A., El-Desouky, M. G., & El-Bindary, A. A. (2024). Adsorption of Azorubine E122 dye via Na-mordenite with tryptophan composite: batch adsorption, Box-Behnken design optimisation and antibacterial activity. Environmental Technology, 45(17), 3496–3515.
  • 4. https://doi.org/10.1080/09593330.2023.2219399
  • 5. Bordun, I., Vasylinych, T., Malovanyy, M., Sakalova, H., Liubchak, L., & Luchyt, L. (2023). Study of adsorption of differently charged dyes by carbon adsorbents. Desalination and water treatment, 288, 151–158. https://doi.org/10.5004/dwt.2023.29332
  • 6. Chrachmy, M., Ghibate, R., El Hamzaoui, N., Lechheb, M., Ouallal, H., & Azrour, M. (2024). Application of raw Moroccan clay as a potential adsorbent for the removal of malachite green dye from an aqueous solution: adsorptionparameters evaluation and thermodynamic study. Materials Research Proceedings, 40, 248–259. https://doi.org/10.21741/9781644903117-27
  • 7. Chung, C. Y., Chen, Y. C., Juang, F. R., & Kao, K. S. (2024). Surface-acoustic-wave-based Ammonia Gas Sensors Using MoS2/SiO2 Composites. Sensors and Materials, 36(10), 4135–4153. https://doi.org/10.18494/SAM5098
  • 8. Cundari, L., Sukandar, M. R., & Nurusman, F. (2023). tempeh industry wastewater treatment using mix natural adsorbents (zeolite, bentonite, water hyacinth-activated carbon): effect of mass ratio and dosage of mix adsorbents on turbidity and pH. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 14, 41–52. https://doi.org/10.21771/jrtppi.2023.v14.no3.p41-52
  • 9. Detho, A., Kadir, A. A., & Rassem, H. H. (2024). Isotherm-kinetic equilibrium investigations on absorption remediation potential for COD and ammoniacal nitrogen from leachate by the utilization of paper waste sludge as an eco-friendly composite filler. Scientific Reports, 14(1), 10599. https://doi.org/10.1038/s41598-024-61392-w
  • 10. Edwards, T. M., Puglis, H. J., Kent, D. B., Durán, J. L., Bradshaw, L. M., & Farag, A. M. (2023). Ammonia and aquatic ecosystems-A review of global sources, biogeochemical cycling, and effects on fish. Science of The Total Environment, 167911. https://doi.org/10.1016/j.scitotenv.2023.167911
  • 11. El-Ghobashy, M. A., Khamis, M. M., Elsherbiny, A. S., & Salem, I. A. (2023). Selective removal of ammonia from wastewater using Cu (II)-loaded Amberlite IR-120 resin and its catalytic application for removal of dyes. Environmental Science and Pollution Research, 30(49), 106822–106837. https://doi.org/10.1007/s11356-023-25677-3
  • 12. Elystia, S., Nasution, F. H. M., & Sasmita, A. (2023). Rotary Algae Biofilm Reactor (RABR) using microalgae Chlorella sp. for tofu wastewater treatment. Materials Today: Proceedings, 87, 263–271. https://doi.org/10.1016/j.matpr.2023.03.206
  • 13. Fitriana, F., Yudianto, D., Sanjaya, S., Roy, A. F., & Seo, Y. C. (2023). The assessment of Citarum river water quality in Majalaya District, Bandung regency. Rekayasa Sipil, 17(1), 37–46. https://doi.org/10.21776/ub.rekayasasipil.2023.017.01.6
  • 14. Gao, H., Li, X., Yuan, P., Li, S., & Liu, Q. (2024). Research on water quality improvement effects of China’s Battle against Black-Odor water bodies. Ecological Indicators, 158, 111374. https://doi.org/10.1016/j.ecolind.2023.111374
  • 15. Husin, A., Aruan, F. H., Huda, A., Herlina, N., & Manalu, S. P. (2024). Ammonia Adsorption Process using Sarulla Natural Zeolite from North Sumatera, Indonesia. In E3S Web of Conferences 519, 03028. EDP Sciences. https://doi.org/10.1051/ e3sconf/202451903028
  • 16. Intang, A., Susmanto, P., Bustan, M. D., & Haryati, S. (2024). Determination of swelling operation parameters to improve the hierarchy of natural zeolite Lampung after synthesis. South African Journal of Chemical Engineering, 50, 125–134. https://doi.org/10.1016/j.sajce.2024.08.004
  • 17. Irawan A, Bindar Y, Kurniawan T, Alwan H, Rosid, & Fauziah N.A. (2021). Bayah natural zeolites to upgrade the quality of bio crude oil from empty fruit bunch pyrolysis. J. Eng. Technol. Sci., 53(3), 210308. https://doi.org/10.5614/j.eng.technol.sci.2021.53.3.8
  • 18. Kordala, N., & Wyszkowski, M. (2024). Zeolite properties, methods of synthesis, and selected applications. Molecules, 29(5), 1069. https://doi.org/10.3390/molecules29051069
  • 19. Kurniawan, T., Bahri, S., Diyanah, A., Milenia, N. D., Nuryoto, N., Faungnawakij, K., & Huda, N. (2020). Improving ammonium sorption of bayah natural zeolites by hydrothermal method. Processes, 8(12), 1569. https://doi.org/10.3390/pr8121569
  • 20. Lawal, A., & Abdulsalam, A. (2024). Removal of methyl orange from aqueous solution using orange peel as a low cost adsorbent. Journal of the Turkish Chemical Society Section A: Chemistry, 11(1), 39–46. https://doi.org/10.18596/jotcsa.1313059
  • 21. Liu, N., Sun, Z., Zhang, H., Klausen, L. H., Moonhee, R., & Kang, S. (2023). Emerging high-ammonia nitrogen wastewater remediation by biological treatment and photocatalysis techniques. Science of the Total Environment, 875, 162603. https://doi.org/10.1016/j.scitotenv.2023.162603
  • 22. Liu, Y., Zhu, Y., Mu, B., Zong, L., Wang, X., & Wang, A. (2024). One-step green construction of granular composite hydrogels for ammonia nitrogen recovery from wastewater for crop growth promotion. Environmental Technology & Innovation, 33, 103465. https://doi.org/10.1016/j.eti.2023.103465
  • 23. Lyu, C., Zhou, X., Lu, X., Zhang, Y., Li, C., Zhou, Q.,... & Chen, G. (2021). The effect of particle size on the interpretation of pore structure of shale by N2 adsorption. Geofluids, 1, 8898142. https://doi.org/10.1155/2021/8898142
  • 24. Ma, H., Chen, G., Huang, F., Li, Y., Zhang, L., & Jin, Y. (2023). Catalytic ozonation of ammonia nitrogen removal in wastewater: A review. Journal of Water Process Engineering, 52, 103542. https://doi.org/10.1016/j.jwpe.2023.103542
  • 25. Maluta, F., Alberini, F., Paglianti, A., & Montante, G. (2024). A CFD study on the change of scale of non-Newtonian stirred digesters at low Reynolds numbers. Chemical Engineering Research and Design, 205, 498–509. https://doi.org/10.1016/j.cherd.2024.04.018
  • 26. Mamman, S., Abdullahi, S. S. A., Birniwa, A. H., Opaluwa, O. D., Mohammad, R. E. A., Okiemute, O.,... & Jagaba, A. H. (2024). Influence of adsorption parameters on phenolic compounds removal from aqueous solutions: A mini review. Desalination and Water Treatment, 100631. https://doi.org/10.1016/j.dwt.2024.100631
  • 27. Melo, J. M., Lütke, S. F., Igansi, A. V., Franco, D. S. P., Vicenti, J. R. M., Dotto, G. L.,... & Felipe, C. A. S. (2024). Mass transfer and equilibrium modelings of phenol adsorption on activated carbon from olive stone. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 680, 132628. https://doi.org/10.1016/j.colsurfa.2023.132628
  • 28. Meng, X., Zeng, P., Lin, S., Bao, H., Wu, M., Yang, L.,... & Sun, W. (2023). Removal of chemical oxygen demand and ammonia nitrogen from high salinity tungsten smelting wastewater by one-step electrochemical oxidation: From bench-scale test, pilot-scale test, to industrial test. Journal of Environmental Management, 340, 117983. https://doi.org/10.1016/j.jenvman.2023.117983
  • 29. Merrad, S., Abbas, M., & Trari, M. (2023). Adsorption of malachite green onto walnut shells: Kinetics, thermodynamic, and regeneration of the adsorbent by chemical process. Fibers and Polymers, 24(3), 1067– 1081. https://doi.org/10.1007/s12221-023-00025-x
  • 30. Muscarella, S. M., Laudicina, V. A., Cano, B., Badalucco, L., Conte, P., & Mannina, G. (2023). Recovering ammonium by treated and untreated zeolitic mixtures: a comprehensive experimental and modelling study. Microporous and Mesoporous Materials, 349, 112434. https://doi.org/10.1016/j. micromeso.2023.112434
  • 31. Muscarella, S. M., Laudicina, V. A., Di Trapani, D., & Mannina, G. (2024). Recovering ammonium from real treated wastewater by zeolite packed columns: The effect of flow rate and particle diameter. Sustainable Chemistry and Pharmacy, 41, 101659. https://doi.org/10.1016/j.scp.2024.101659
  • 32. Narkesabad, S. Z., Rafiee, R., & Jalilnejad, E. (2023). Experimental study on evaluation and optimization of heavy metals adsorption on a novel amidoximated silane functionalized Luffa cylindrica. Scientific reports, 13(1), 3670. https://doi.org/10.1038/s41598-023-30634-8
  • 33. Ningsih, L. M., Mazancová, J., Hasanudin, U., & Roubík, H. (2024). Energy audits in the tofu industry; an evaluation of energy consumption towards a green and sustainable industry. Environment, Development and Sustainability, 1–23. https://doi.org/10.1007/s10668-024-05109-z
  • 34. Nuryoto, N., Sulistyo, H., Sediawan, W. B., & Perdana, I. (2016). Modified Mordenite Natural Zeolite as Catalyst for Ketalization and Esterification. Reaktor, 16(2), 72–80. https://doi.org/10.14710/reaktor.16.2.72-80
  • 35. Padinjarekutt, S., Li, H., Ren, S., Ramesh, P., Zhou, F., Li, S.,... & Yu, M. (2023). Na+-gated nanochannel membrane for highly selective ammonia (NH3) separation in the Haber-Bosch process. Chemical Engineering Journal, 454, 139998. https://doi.org/10.1016/j.cej.2022.139998
  • 36. Soetardji, J.P., Claudia, J.C., Hsu Ju Y., Hriljac J.A., Yu Chen T., Soetaredjo, F.E., Satoso S.P. Kurniawan A., & Ismadji S. (2015). Ammonia removal from water using sodium hidroxide modified zeolite mordenite, Journal of Royal Society of Chemistry advance, 5, 83689–83699. https://doi.org/10.1039/C5RA15419G
  • 37. Steiner, H., Hinterbichler, H., & Brenn, G. (2023). Self-similar pressure-atomized sprays with heat and mass transfer. Industrial & Engineering Chemistry Research, 62(42), 17041–17051. https://doi.org/10.1021/acs.iecr.3c01545
  • 38. Trach, Y., Trach, R., Kuznietsov, P., Pryshchepa, A., Biedunkova, O., Kiersnowska, A., & Statnyk, I. (2024). Predicting the influence of ammonium toxicity levels in water using fuzzy logic and ANN models. Sustainability, 16(14), 5835. https://doi.org/10.3390/su16145835
  • 39. Wang, Z., Christodoulou, C., & Mazzei, L. (2024). Analytical study on the liquid-particle mass transfer coefficient for multiparticle systems. Chemical Engineering Journal, 152733. https://doi.org/10.1016/j.cej.2024.152733
  • 40. Watanabe, Y., Aoki, W., & Ueda, M. (2023). Ammonia production using bacteria and yeast toward a sustainable society. Bioengineering, 10(1), 82. https://doi.org/10.3390/bioengineering10010082
  • 41. Yadav, V., Kumar, L., Saini, N., Yadav, M., Singh, N., Murugasen, V., & Varathan, E. (2023). Effective removal of ammonia from water using pre-treated clinoptilolite zeolite-a detailed study. Water, Air, & Soil Pollution, 234(7), 435. https://doi.org/10.1007/ s11270-023-06469-4
  • 42. Zhou, H. D., Wang, C. Y., Wang, Q., Xu, B. X., & Zhu, G. (2024). Efficiency, mechanism and application prospect of ammonium adsorption and desorption over a sodium-acetate-modified synthetic zeolite. RSC advances, 14(25), 17843-17854. https://doi.org/10.1039/D4RA01547A
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c227ae7f-85fa-4670-bba1-28c3bbe4aa73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.