PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Field and experimental research on airflow velocity boundary layer in coal mine roadway

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is an airflow velocity boundary layer near tunnel wall when the air is flowing in the underground coal mine. The thickness and distribution of the airflow velocity boundary layer could influence the discharge of harmful and toxic gases that enter the ventilating airflow through this flow interface. It may also have a major impact in coal mine gas explosion. The results of field measurements and simulation experimental data are used to research airflow velocity boundary layer in a flat walled mine roadway, which is considered in turn: as unsupported, I-steel sectioned arch or bolted and shot create supported cross section. By referenced to other literature studies that consider boundary layer characteristics and the analysis of on-site and experimental data sets we obtain the corresponding airflow velocity boundary layer characteristics for each of the supported roadway sections. The airflow velocity within the boundary layer increase is assumed to follow a logarithmic law given by the expression: u = a Ln(x) + b. It is concluded that the thickness of the airflow velocity boundary layer is observed to significantly decrease with the airflow center velocity and to increase with roadway wall roughness. The airflow velocity distribution is found to be described by the equation: u = (m1v + n1)Ln(d) + m2v + n2, for the three types coal mine tunnel taking into account the influence of center airflow velocity.
Rocznik
Strony
255--270
Opis fizyczny
Bibliogr. 30 poz., fot., tab., wykr.
Twórcy
autor
  • Aiyuan University of Technology, College of Safety and Emergency Management Engine-Ering, 030024, Taiyuan, China
  • Taiyuan University of Technology, College of Mining Engineering, Taiyuan, Shanxi Province 030024, China
Bibliografia
  • [1] Chao Z., Qiang L., Rong C., Xun Z., 2015. Locomotion of bacteria in liquid flow and the boundary layer effect on bacte-rial attachment. Biochemical & Biophysical Research Communications 461 (4), 671-676.
  • [2] Özgen Karacan C., 2007. Development and application of reservoir models and artificial neural networks for optimizing ventilation air requirements in development mining of coal seams. International Journal of Coal Geology 72 (3-4), 221-239.
  • [3] Dave N., Azih C., Yaras M.I., 2013. A dns study on the effects of convex streamwise curvature on coherent structures in a temporally-developing turbulent boundary layer with supercritical water. International Journal of Heat & Fluid Flow 44 (12), 635-643.
  • [4] Degrazia G.A., Maldaner S., Buske D., Rizza U., Buligon L., Cardoso V. et al., 2015. Eddy diffusivities for the convective boundary layer derived from les spectral data. Atmospheric Pollution Research, 6.
  • [5] Dong Z., Mu Q., Wang H., 2007. Wind velocity profiles with a blowing sand boundary layer: theoretical simulation and experimental validation. Journal of Geophysical Research Atmospheres 112 (D19), 216-229.
  • [6] Dörenkämper M., Witha B., Steinfeld G., Heinemann D., Kühn M., 2015. The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms. Journal of Wind Engineering & Industrial Aerodynamics 144, 146-153.
  • [7] Geng F., Luo G., Wang Y.C., Peng ZB., Hu S.Y., Zhang T.T., Chai, H.L., 2018. Dust dispersion in a coal roadway driven by a hybrid ventilation system: A numerical study. Process Safety And Environmental Protection 113, 388-400.
  • [8] Ghate V.P., Miller M.A., Lynne D.P., 2011. Vertical velocity structure of marine boundary layer trade wind cumulus clouds. Journal of Geophysical Research 116 (D16), 971-978.
  • [9] Hargreaves D.M., Lowndes I.S., 2007. The computational modeling of the ventilation flows within a rapid development drivage. Tunnelling and Underground Space Technology 22 (2), 150-160.
  • [10] Herdeen J., Sullivan P., 1993. The application of CFD for evaluation of dust suppression and auxiliary ventilation systems used with continuous miners. In: Proceeding of the 6th US Mine Ventilation Symposium, SME, Littleton, 293-297.
  • [11] Ko M., Ingham B., Laycock N., Williams D.E., 2015. In situ synchrotron x-ray diffraction study of the effect of micro-structure and boundary layer conditions on co2 corrosion of pipeline steels. Corrosion Science 90, 192-201.
  • [12] Kornilov V.I., 2015. Current state and prospects of researches on the control of turbulent boundary layer by air blowing. Progress in Aerospace Sciences 76, 1-23.
  • [13] Kumar P., Mishra D.P., Panigrahi D.C., Sahu P., 2015. Numerical studies of ventilation effect on methane layering behaviour in underground coal mines. Current Science 112, 1873-1881.
  • [14] Lee J.H., 2015. Turbulent boundary layer flow with a step change from smooth to rough surface. International Journal of Heat & Fluid Flow 54, 39-54.
  • [15] Lengani D., Simoni D., 2015. Recognition of coherent structures in the boundary layer of a low-pressure-turbine blade for different free-stream turbulence intensity levels. International Journal of Heat & Fluid Flow 54, 1-13.
  • [16] Ligeza P., Poleszczyk E., Skotniczny P., 2009. A three-dimensional modelling of the structure of flow parameter fields in mine drifts. Archives of Mining Sciences 54, 601-621.
  • [17] Luo Y., Zhao Y., 2015. Wind tunnel simulation on wind speed distribution in coal mine roadways within different rough-ness. Journal of Taiyuan University of Technology 02, 235-237.
  • [18] Luo Y., Zhao Y., Wang Y., Chi M., Tang H., Wang S., 2015. Distributions of airflow in four rectangular section roadways with different supporting methods in underground coal mines. Tunnelling & Underground Space Technology 46, 85-93.
  • [19] Moloney K.W., Lowndes I.S., 1999. Comparison of measured underground air velocities and air flows simulated by computational fluid dynamics. Trans. Inst. Min. Metall. (Sec. A: Min. Ind.) 108, 105-114.
  • [20] Murena F., Mele B., Murena F., Mele B., 2014. Effect of short-time variations of wind velocity on mass transfer rate between street canyons and the atmospheric boundary layer. Atmospheric Pollution Research, 5.
  • [21] Pal S., Lee T.R., Wekker S.F.J.D., 2017. A study of the combined impact of boundary layer height and near-surface meteorology to the co diurnal cycle at a low mountaintop site using simultaneous lidar and in-situ observations. Atmospheric Environment.
  • [22] Saha C.K., Wu W., Zhang G., Bjerg B., 2011. Assessing effect of wind tunnel sizes on air velocity and concentration boundary layers and on ammonia emission estimation using computational fluid dynamics (cfd). Computers & Electronics in Agriculture 78 (1), 49-60.
  • [23] Shi Y., Bai J., Hua J., Yang T., 2015. Numerical analysis and optimization of boundary layer suction on airfoils. Chinese Journal of Aeronautics 02 (02), 357-367.
  • [24] Skotniczny P., Ostrogorski P., 2018. Three-Dimensional Air Velocity Distributions in the Vicinity of a Mine Heading’s Sidewall. Archives of Mining Sciences 63, 335-352.
  • [25] Stevens R., Gayme D., Meneveau C., 2015. Coupled wake boundary layer model of wind-farms. Journal of Renewable & Sustainable Energy 7 (2).
  • [26] Toraño J., Torno S., Menendez M., Gent M., Velasco J., 2009. Models of methane behaviour in auxiliary ventilation of underground coal mining. International Journal of Coal Geology 80 (1), 35-43.
  • [27] Tse K.T., Li S.W., Fung J.C.H., Chan P.W., 2015. An information exchange framework between physical modeling and numerical simulation to advance tropical cyclone boundary layer predictions. Journal of Wind Engineering & Industrial Aerodynamics 143, 78-90.
  • [28] Uchino K., Inoue M., 1997. Auxiliary ventilation at a heading of a face by a fan. In: Proceeding of the 6th US Mine Ventilation Symposium, SME, Littleton, 493-496.
  • [29] Wala A., Jacob J., Brown J., Huang G., 2003. New approaches to mine-face ventilation. Mining Engineering 55 (3), 25-30.
  • [30] Yuan L., Smith A.C., Brune J.F., 2006. Computational fluid dynamics study on ventilation flow paths in longwall gobs. In: 11th US/North American Mine Ventilation Symposium, State College, PA, 591-598.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2276047-735e-4231-ba64-d7412bc14c5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.