Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a multivariate regression predictive model of drift on the Coordinate Measuring Machine (CMM) behaviour. Evaluation tests on a CMM with a multi-step gauge were carried out following an extended version of an ISO evaluation procedure with a periodicity of at least once a week and during more than five months. This test procedure consists in measuring the gauge for several range volumes, spatial locations, distances and repetitions. The procedure, environment conditions and even the gauge have been kept invariables, so a massive measurement dataset was collected over time under high repeatability conditions. A multivariate regression analysis has revealed the main parameters that could affect the CMM behaviour, and then detected a trend on the CMM performance drift. A performance model that considers both the size of the measured dimension and the elapsed time since the last CMM calibration has been developed. This model can predict the CMM performance and measurement reliability over time and also can estimate an optimized period between calibrations for a specific measurement length or accuracy level.
Czasopismo
Rocznik
Tom
Strony
417--428
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
- University of Oviedo, Department of Construction & Manufacturing Engineering, Campus de Gijon, 33203 Gijon, Asturias, Spain
autor
- University of Oviedo, Department of Construction & Manufacturing Engineering, Campus de Gijon, 33203 Gijon, Asturias, Spain
autor
- University of Oviedo, Department of Construction & Manufacturing Engineering, Campus de Gijon, 33203 Gijon, Asturias, Spain
autor
- University of León, Department of Mechanical, Informatics and Aerospatiale Engineering, Campus of Vegazana, 24071 León, Spain
Bibliografia
- [1] ISO 10360-2:2009. Geometrical Product Specifications (GPS) - Acceptance and reverification tests for coordinate measuring machines (CMM). Part 2: CMMs used for measuring linear dimensions.
- [2] ISO JCGM 100:2008. Evaluation of measurement data - Guide to the expression of uncertainty in measurement.
- [3] ISO/TS 15530-3:2011. Geometrical Product Specifications (GPS). Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement. Part 3: Use of calibrated workpieces or measurement standards.
- [4] ISO/TS 23165:2006 Geometrical product specifications (GPS) - Guidelines for the evaluation of coordinate measuring machine (CMM) test uncertainty.
- [5] Stanfield, E., Muralikrishnan, B., Doiron, T., Zheng, A, Orandi, S., Duquette, D. (2013). Two applications of small feature dimensional measurements on a coordinate measuring machine with a fiber probe. Meas. Sci. Technol., 24, 105008.
- [6] Savio, E. (2006). Uncertainty in testing the metrological performances of coordinate measuring machines. CIRP Ann. Manuf. Techn., 55(1), 535-538.
- [7] Pahk, H., Kim, J. (1993). Development of computer integrated system for error diagnosis of a CMM using calibrated mechanical artefacts. Int. J. Mach. Tool. Manu., 33(6), 773-790.
- [8] Takatsuji, T., Osawa, S., Kurosawa, T. (2002). Uncertainty analysis of calibration of geometrical gauges. Precis. Eng., 26(1), 24-29.
- [9] Ramu, P., Yagüe, J.A., Hocken, R.J., Miller, J. (2011). Development of a parametric model and virtual machine to estimate task specific measurement uncertainty for a five-axis multi-sensor coordinate measuring machine. Precis. Eng., 35(3), 431-439.
- [10] Shen, Y., Moon, S. (1996). Error Compensation of Coordinate Measurements in Computer-Integrated Manufacturing Using Neural Networks. J. Mater. Process. Tech., 61(1-2), 12-17.
- [11] Beaman, J., Morse, E. (2010). Experimental evaluation of software estimates of task specific measurement uncertainty for CMMs. Precis. Eng., 34(1), 28-33.
- [12] Piratelli-Filho, A., Di Giacomo, B. (2003). CMM uncertainty analysis with factorial design. Precis. Eng., 27(3), 283-288.
- [13] Wilhelml, R.G., Hocken, R., Schwenke, H. (2001). Task Specific Uncertainty in Coordinate Measurement. CIRP Ann. Manuf. Techn., 50(2), 553-563.
- [14] Feng, C.X., Wang, X.F. (2002). Subset Selection in Predictive Modeling of the CMM Digitization Uncertainty. J. Manuf. Syst., 21(6), 419-439.
- [15] Jakubiec, W., Płowucha, W., Starczak. M. (2012). Analytical estimation of coordinate measurement uncertainty.Measurement, 45(10), 2299-2308.
- [16] Sidki, H.M., Amer, M., (2008), Evaluation of CMM for flatness measurements, Metrol. Meas. Syst., 15(4), 585-593.
- [17] Trapet, E. (1999). Traceability of coordinate measuring machines according to the method of the Virtual Measuring Machines. PTB F-35, Braunschweig.
- [18] Baldwin, J., Summerhays, K., Campbell, D., Henke, R., (2007). Application of Simulation Software to Coordinate Measurement Uncertainty Evaluations. Measure (NCSL International Measure Journal), 2(4), 40-52.
- [19] Abbe, M., Takamasu, K., Ozono, S. (2003). Reliability of calibration of CMM. Measurement, 33(4), 359-368.
- [20] Sladek, J., Gaska, A., Olszewska, M., Kupiec, R., Krawczyk, M. (2013). Virtual Coordinate Measuring Machine built using Lasertracer system and spherical standard. Metrol. Meas. Syst., 20(1), 77-86.
- [21] Kruth, J.P., Vanherck, P., van den Bergh, C., Schacht, B. (2002). Interaction between workpiece and CMM during geometrical quality control in non-standard thermal conditions. Precis. Eng., 26(1), 93-98.
- [22] Ali, S.H.R. (2008). The influence of fitting algorithm and scanning speed on roundness error for 50 mm standard ring measurement using CMM. Metrol. Meas. Syst., 15(1), 33-53.
- [23] Wozniak, A. (2006), Simple method of 3D error compensation of triggering probes on coordinate measuring machine. Metrol. Meas. Syst., 13(3), 289-299.
- [24] Poniatowska, M. (2008). Determining the uncertainty of fitting discrete measurement data to a nominal surface.Metrol. Meas. Syst., 15(4), 595-606.
- [25] Jakubiec, W. (2009). Analytical estimation of uncertainty of Coordinate Measurements of geometric deviations. Models based on distance between point and straight line. Advances in Manufacturing Science and Technology, 33(2), 45-54.
- [26] Poniatowska, M., Werner, A. (2010). Fitting spatial models of geometric deviations of free-form surfaces determined in coordinate measurements. Metrol. Meas. Syst., 17(4), 599-610.
- [27] Savio, E., De Chiffre, L. (2002). An artefact for traceable freeform measurements on coordinate measuring machines. Precis. Eng., 26(1), 58-68.
- [28] Aggogeri, F., Barbato, G., Barini, E.M., Genta, G., Levi, R. (2011). Measurement uncertainty assessment of Coordinate Measuring Machines by simulation and planned experimentation. CIRP Journal of Manufacturing Science and Technology, 4(1).
- [29] Feng, C.X., Saal, A., Salsbury, J., Ness, A., Lin, G., (2007). Design and analysis of experiments in CMM measurement uncertainty study. Precis. Eng., 31(2), 94-101.
- [30] Nafi, A., Mayer, J.R.R., Wozniak, A. (2011). Novel CMM-based implementation of the multi-step method for the separation of machine and probe errors. Precis. Eng., 35(2), 318-328.
- [31] Barini, E.M., Tosello, G., De Chiffre, L. (2010). Uncertainty analysis of point-by-point sampling complex surfaces using touch probe CMMs DOE for complex surfaces verification with CMM. Precis. Eng., 34(1), 16-21.
- [32] Longstaff, A.P., Fletcher, S., Parkinson, S., Myers, A. (2013). The role of measurement and modelling of machine tools in improving product quality. Int. J. Metrology and Quality Engineering, 4(3), 177-184.
- [33] Barkallah, M., Louati, J., Haddar, M. (2012). Evaluation of manufacturing tolerance using a statistical method and experimentation. Int. J. Simulation Modelling, 11(1), 5-16.
Uwagi
EN
Authors gratefully acknowledge the financial support provided by the Spanish Ministry of Economy and Competitiveness through FEDER (ERDF) research project DPI2012-36642.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c218e012-a093-4d64-b77a-c2a9bcc9d618
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.