Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Uczenie nienadzorowane w przestrzeni utajonej z wykorzystaniem zmodyfikowanego algorytmu nietoperzowego sterowania rozmytego
Języki publikacji
Abstrakty
In this paper, a modified bat algorithm with fuzzy inference Mamdani-type system is applied to the problem of document clustering in a semantic features space induced by SV D decomposition. The algorithm learns the optimal clustering of the documents as well as the optimal number of clusters in a concept space; thus, making it suitable for a large and spare dataset which occur in information retrieval system. A centroidbased solution in multidimensional space is evaluated with a silhouette index. A TF-IDF method is used to represent documents in vector space. The presented algorithm is tested on the 20 Newsgroup dataset.
W publikacji zmodyfikowany algorytm nietoperzowy z rozmytym kontrolerem typu Mamdaniego został zastosowany do problemu analizy skupisk dla danych tekstowych. Proces uczenia odbywa się w przestrzeni skompresowanej, otrzymanej z dekompozycji SV D zbioru uczącego. Prezentowany algorytm uczy się jednocześnie optymalnego pokrycia klastrami przestrzeni oraz liczebności klastrów. Do oceny jakości rozwiązania zastosowano wskaźnik Sillhouette. Dane w reprezentacji wektorowej otrzymano z wykorzystaniem transformacji TF-IDF. Prezentowany algorytm przetestowana na zbiorze „20 Newsgroup”.
Czasopismo
Rocznik
Tom
Strony
141--153
Opis fizyczny
Bibliogr. 26 poz., wz., tab., rys.
Twórcy
autor
- Department of Computer Science, Faculty of Electrical and Computer Engineering, Cracow University of Technology
Bibliografia
- [1] Baziar A., Kavoosi-Fard A.A., Zare J., A Novel Self Adoptive Modification Approach Based on Bat Algorithm for Optimal Management of Renewable MG, Journal of Intelligent Learning System and Application, Vol. 5, Issue 1, 2013, 11–18.
- [2] Caliński R., Harabasz J., A dendrite method for cluster analysis, Commun. Stat., Vol. 3, No. 1, 1–27, 197.
- [3] Davies D., Bouldin D., A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell., Vol. PAMI–1, No. 2, 224–227.
- [4] Dorigo M., Maziezzo V., Colorni A., The ant system: optimization by a colony of cooperating ants, IEEE Trans. on Systems, Man and Cybernetics B, Vol. 26, No. 1, 1996, 29–41.
- [5] Dorigo M., Stützle T., Ant Colony Optimization, MIT Press, 2004
- [6] Eberhart R. C., Shi Y., Empirical Study of Particle Swarm Optimization, 1999
- [7] Eberhart R., Shi Y., Particle swarm optimization: Developments, applications, and recourses, Proc. Congr. EVol. Comput., 2001, 81–86.
- [8] Fister I. Jr, Fister D., Yang X.S., A Hybrid Bat Algorithm, Elektrotehniski Vestnik, 2013, 1–7.
- [9] Fong S., Yang X.S., Karamanglu M., Bat Algorithm for Topology Optimization in Microelectronic Application, International Conference on Future Generation Communication Technology (FGCT), IEEE, 2012, 150–155.
- [10] Goldberg D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Kluwer Academic Publishers, 1989.
- [11] Hansen P., Jaumard B., Cluster analysis and mathematical programming, Math. Program., Vol. 79, 1997, 191–215.
- [12] Hofmann T., Probabilistic Latent Semantic Analysis, Proc of the Fifteenth conference on Uncertainty in artificial intelligence, UAI’99, 289–296.
- [13] Kennedy J., Eberhart R.C., Particle swarm optimization, Proc. of IEEE International Conference on Neural Networks, Vol. 4, 1995, 1942–1948.
- [14] Kennedy J., Eberhart R., Shi Y., Swarm Intelligence, Academic, 2001.
- [15] Kiełkowicz K., Grela D., FLC control for tuning exploration phase in bio–inspired metaheuristic, Annales Universitatis Mariae Curie–Sklodowska, sectio AI – Informatica, 2017.
- [16] Kiełkowicz K., Grela D., Modified Bat Algorithm for Nonlinear Optimization, International Journal of Computer Science and Network Security (IJCSNS), 2016, 46–50.
- [17] Melin P., Olivas F., Castillo O., Valdez F., Soria J., Valdez M., Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic, Expert Systems with Applications, Vol. 40, Issue 8, 2013, 3196–3206.
- [18] Merwe D., Engelbrecht A., Data clustering using particle swarm optimization, Proc. Congre. EVol. Comput, Vol. 1, 215–220.
- [19] Mirjalili S., Mirjalili S. M., Yang Xin–She, Binary Bat Algorithm, Neural Computing and Applications, Vol. 25, Issue 3, 2014, 663–681.
- [20] Storn R., Price K., Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces, Technical Report, 1995.
- [21] Xu R., Xu J., Wunsch C., A Comparison Study of Validity Indices on Swarm–Intelligence–Based Clustering, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART B: CYBERNETICS, Vol. 42, No. 4, 2012
- [22] Yang X. S., A New Metaheuristic Bat–Inspired Algorithm, Nature Inspired Cooperative Strategies for Optimization, 2010, 65–74.
- [23] Yang X. S., Bat Algorithm for Multi-Objective Optimization, International Journal of Bio-Inspired Computation, Vol. 3, Issue 5, 2011, 267–274
- [24] Rousseeuw P., Silhouettes: Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis, Computational and Applied Mathematics 20, 53–65.
- [25] Sparck Jones, K., A statistical interpretation of term specificity and its application in retrieval, Journal of Documentation, 28, 11–21.
- [26] Sparck Jones, K., IDF term weighting and IR research lessons, Journal of Documentation, 60(6), 521–523.
Uwagi
EN
Section "Electrical Engineering"
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c216392e-7119-4821-bd92-e5c47f298b80