PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research of the Force Function Distribution in the Workplace of the Magnetic Disc Type Separator Intended for the Cleaning of Bulk Substances from the Ferromagnetic Impurities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the magnetic system of the disk separator with permanent magnets. It is shown that the developed magnetic system can be used to purify finely dispersed friable substances from unwanted ferromagnetic inclusions. The main advantage of the magnetic system is the ability to self-clean the surface of a non-magnetic rotating discharging disk. The research of the distribution of the force function acting on multi-domain ferromagnetic particles in the working zone of the disk separator was carried out. To solve the main tasks of the study, a finite element method was implemented, realized in the COMSOL Multiphysics software environment. It is shown that when changing the air gap or the effective length of the poles, the distribution of the force function over the height of the working zone, as well as the magnitude of force, varies. The rational size of the air interpolar gap, which provides the maximum value of power force, was determined.
Twórcy
  • Kyiv National University of Technologies and Design (KNUTD) Nemyrovycha-Danchenka Street, 2 Kyiv, Ukraine, 01011
  • East Ukrainian National University named after Vladimir Dal 59а Central ave., Severodonetsk, Ukraine, 93400
Bibliografia
  • 1. Mikhailov V. M., Sen’kov A. P. 2017. The Use of Permanent-Magnet Machines in Ship Electrical Systems // Russian Electrical Engineering / Vol. 88, Issue 12. – pp. 814–817.
  • 2. Xu L., Lin M. Y., F X. H., Li N. 2016. Analysis of a double stator linear rotary permanent magnet motor with orthogonally arrayed permanent magnets // IEEE Transactions on Magnetics / Vol. 52, Issue 7.
  • 3. Grebennikov V. V. 2011. Permanent magnet generators for wind turbines and micro-hydro // Hydropower of Ukraine. – # 1. p. 43-48. (in Russian).
  • 4. Furlani E. 2001. Permanent Magnet and Electromechanical Devices: Materials, Analyses and Application // New York: Academic Press. - 518 p. doi: 10.1016/B978-012269951-1/50005-X.
  • 5. Strnat K. J. 1990. Modern Permanent Magnets for Application in Electro-Technology // Proceedings of the IEEE / Vol.78, Issue 6. – pp. 923-946.
  • 6. Bulyzhev E. M., Menshov E. N., Javakhiya G. A. 2011. Modeling the permanent magnet field // Proceedings of the Samara Scientific Center of the Russian Academy of Sciences / Vol.13, Issue 4. – pp. 106-110 (in Russian).
  • 7. Lungu M., Schlett Z. 2001. Vertical drum eddycurrent separator with permanent magnets // International Journal of Mining Processing / Vol. 63. – P. 207-216.
  • 8. Nedelcu S., Watson J. H. P. 2002. Magnetic separator with transversally magnetised disk permanent magnets // Minerals Engineering / Vol.15, Issue 5. – pp. 355-359.
  • 9. Zagirnyak M., Miljavec D., Shvedchikova I. 2011. Forming a genetic record of cylindrical magnetic separator structures // Przegląd elektrotechniczny (Electrical Review). – # 3. – p. 220-223.
  • 10. Camacho J. M., Sosa V. 2013. Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry // Revista Mexicana de F´ısica # 59. – P. 8-17.
  • 11. Sandulyak A. A., Yershov D. V., Oreshkin D. V., Sandulyak A. V. 2013. Characteristics of field Induction in the magnetic separator module // Vestnik MGSU. – #5. – P. 103-111 (in Russian).
  • 12. Kilin V. I., Kilin S. V. 2008. By choosing the pole pitch of the magnetic separator systems for dry processing// Enrichment ore. #6. – P. 14-18 (in Russian).
  • 13. S. Zeng S., Zeng W., Ren L., An D., Li H. 2015. Development of a high gradient permanent magnetic separator (HGPMS) // Minerals Engineering / Vol.71. – P. 355-359.
  • 14. Karl O. M., Kondratenko I. P., Krischuk R. S., Rashchepkin A. P. 2014. Magnetic system with permanent magnets for localization of magnetic nanoparticles in a given region of biological environments // Electromechanical and energy saving systems / Vol 4, Issue 28. – pp. 79-85 (in Ukraine).
  • 15. Kyrylenko A. V., Chekhun V. F., Podol'tsev A. D., Kondratenko I. P., Kucheryavaya I. N., Bondar V. V. 2012. The motion of magnetic nanoparticles in the flow of liquid at the application of a constant magnetic field // Reports of the National Academy of Sciences of Ukraine. – #2. – p. 186-196 (in Ukraine).
  • 16. Brauer J. R. 2015. Magnetic nanoparticle simulation // ANSYS ADVANTAGE / Vol. 9, Issue 1. – pp. 47-50.
  • 17. Berry C., Curtis A. 2003. Functionalisation of magnetic nanoparticles for applications in biomedicine // Journal of Physics D: Applied Physics / Vol. 36, Issue 13.
  • 18. COMSOL Multiphysics, version 3.5а. AC/DC Module Reference Guide. – www.comsol.com.
  • 19. Shvedchikova I. A., Zemzyulin M. A. 2013. Investigation of the distribution of the magnetic field in a disk separator with a spiral-type magnetic system // Elektromekhanіchni і Energosberіgayuchі sistemi. - #2(22). – ch. 2. p. 18-24 (in Russian).
  • 20. Gerlici U., Shvedchikova I. A., Nikitchenko I. V., Romanchenko J. A. 2017. Investigation of influence of separator magnetic system configuration with permanent magnets on magnetic field distribution in working area // Electrical Engineering and Electromechanics. – #2. – p. 13-17.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2130f24-be58-41b3-a361-47af3d6dec49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.