PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Long short term memory (LSTM) recurrent neural network for low flow hydrological time series forecasting

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article explores the suitability of a long short-term memory recurrent neural network (LSTM-RNN) and artificial intelligence (AI) method for low-flow time series forecasting. The long short-term memory works on the sequential framework which considers all of the predecessor data. This forecasting method used daily discharged data collected from the Basantapur gauging station located on the Mahanadi River basin, India. Diferent metrics [root-mean-square error (RMSE), Nash–Sutclife efciency (ENS), correlation coefcient (R) and mean absolute error] were selected to assess the performance of the model. Additionally, recurrent neural network (RNN) model is also used to compare the adaptability of LSTM-RNN over RNN and naïve method. The results conclude that the LSTM-RNN model (R=0.943, ENS=0.878, RMSE=0.487) outperformed RNN model (R=0.935, ENS=0.843, RMSE=0.516) and naïve method (R=0.866, ENS=0.704, RMSE=0.793). The fnding of this research concludes that LSTM-RNN can be used as new reliable AI technique for low-flow forecasting.
Czasopismo
Rocznik
Strony
1471--1481
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
  • Department of Civil Engineering, National Institute of Technology, Patna, India
autor
  • Department of Civil Engineering, National Institute of Technology, Patna, India
  • Department of Civil Engineering, National Institute of Technology, Patna, India
autor
  • Department of Civil Engineering, National Institute of Technology, Patna, India
Bibliografia
  • 1. Abidogun OA (2005) Data mining, fraud detection and mobile telecommunications: call pattern analysis with unsupervised neural networks. University of the Western Cape, Cape Town
  • 2. Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H (2018) State-of-the-art in artificial neural network applications: a survey. Heliyon 4:e00938
  • 3. Ahn KH, Palmer RN (2016) Use of a nonstationary copula to predict future bivariate low flow frequency in the Connecticut river basin. Hydrol Process 30:3518–3532
  • 4. Arena C, Cannarozzo M, Mazzola MR (2006) Multi-year drought frequency analysis at multiple sites by operational hydrology–a comparison of methods. Phys Chem Earth Parts A/B/C 31:1146–1163
  • 5. ASCE (2000a) Artificial neural networks in hydrology. I: Preliminary concepts. J Hydrol Eng 5:115–123
  • 6. ASCE (2000b) Artificial neural networks in hydrology. II: Hydrologic applications. J Hydrol Eng 5:124–137
  • 7. Assaad M, Boné R, Cardot H (2008) A new boosting algorithm for improved time-series forecasting with recurrent neural networks. Inf Fusion 9:41–55
  • 8. Atiya AF, El-Shoura SM, Shaheen SI, El-Sherif MS (1999) A comparison between neural-network forecasting techniques-case study: river flow forecasting. IEEE Trans Neural Netw 10:402–409
  • 9. Bandara K, Bergmeir C, Smyl S (2017) Forecasting across time series databases using long short-term memory networks on groups of similar series. arXiv preprint arXiv:171003222
  • 10. Beven KJ (2012) Rainfall-runoff modelling: the primer. Wiley, New York
  • 11. Box G, Jenkins G (1970) Time series analysis; forecasting and control. Holden-Day, San Francisco
  • 12. Carlson RF, MacCormick A, Watts DG (1970) Application of linear random models to four annual streamflow series. Water Resour Res 6:1070–1078
  • 13. Chang F, Chang LC, Huang HL (2002) Real-time recurrent learning neural network for stream-flow forecasting. Hydrol Process 16:2577–2588
  • 14. Chen H-L, Rao AR (2002) Testing hydrologic time series for stationarity. J Hydrol Eng 7:129–136
  • 15. Cheng C, Chau K, Sun Y, Lin J (2005) Long-term prediction of discharges in Manwan Reservoir using artificial neural network models. Adv Neural Netw 2005:975
  • 16. Chollet F (2016) Keras. https://github.com/fchollet/keras/tree/master/keras
  • 17. Cinar YG, Mirisaee H, Goswami P, Gaussier E, Aït-Bachir A, Strijov V (2017) Position-based content attention for time series forecasting with sequence-to-sequence RNNs. In: International conference on neural information processing. Springer, pp 533–544
  • 18. Demirel MC, Booij MJ, Hoekstra AY (2013) Identification of appropriate lags and temporal resolutions for low flow indicators in the River Rhine to forecast low flows with different lead times. Hydrol Process 27:2742–2758
  • 19. Dimitriadis P, Koutsoyiannis D (2015) Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst-Kolmogorov processes. Stoch Environ Res Risk Assess 29:1649–1669
  • 20. Dimitriadis P, Koutsoyiannis D, Tzouka K (2016) Predictability in dice motion: how does it differ from hydro-meteorological processes? Hydrol Sci J 61:1611–1622
  • 21. Dracup JA, Lee KS, Paulson EG (1980) On the definition of droughts. Water Resour Res 16:297–302
  • 22. Fang K, Shen C, Kifer D, Yang X (2017) Prolongation of SMAP to spatiotemporally seamless coverage of continental US using a deep learning neural network. Geophys Res Lett 44:11–15
  • 23. Firat M, Güngör M (2007) River flow estimation using adaptive neuro fuzzy inference system. Math Comput Simul 75:87–96
  • 24. Firat M, Güngör M (2008) Hydrological time-series modelling using an adaptive neuro-fuzzy inference system. Hydrol Process 22:2122–2132
  • 25. Gárfias-Soliz J, Llanos-Acebo H, Martel R (2010) Time series and stochastic analyses to study the hydrodynamic characteristics of karstic aquifers. Hydrol Process 24:300–316
  • 26. Gers F (2001) Long short-term memory in recurrent neural networks Unpublished PhD dissertation. Ecole Polytechnique Fédérale de Lausanne, Lausanne
  • 27. Gers FA, Schmidhuber J, Cummins F (1999) Learning to forget: continual prediction with LSTM. 850–855
  • 28. Giuntoli I, Renard B, Vidal J-P, Bard A (2013) Low flows in France and their relationship to large-scale climate indices. J Hydrol 482:105–118
  • 29. Gustard A, Demuth S (2009) Manual on low-flow estimation and prediction. Opera
  • 30. Hipel KW, McLeod AI (1994) Time series modelling of water resources and environmental systems, vol 45. Elsevier, Amsterdam
  • 31. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780
  • 32. Hu T, Lam K, Ng S (2001) River flow time series prediction with a range-dependent neural network. Hydrol Sci J 46:729–745
  • 33. Hyndman RJ, Athanasopoulos G (2018) Forecasting: principles and practice. OTexts, Melbourne
  • 34. Jain A, Kumar AM (2007) Hybrid neural network models for hydrologic time series forecasting. Appl Soft Comput 7:585–592
  • 35. Jha R, Smakhtin V (2008) A review of methods of hydrological estimation at ungauged sites in India, vol 130. IWMI, Colombo
  • 36. Jha R, Sharma K, Singh V (2008) Critical appraisal of methods for the assessment of environmental flows and their application in two river systems of India. KSCE J Civ Eng 12:213–219
  • 37. Keskin ME, Taylan D, Terzi O (2006) Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series. Hydrol Sci J 51:588–598
  • 38. Kişi Ö (2007) Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng 12:532–539
  • 39. Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399:132–140
  • 40. Komorník J, Komorníková M, Mesiar R, Szökeová D, Szolgay J (2006) Comparison of forecasting performance of nonlinear models of hydrological time series. Phys Chemi Earth Parts A/B/C 31:1127–1145
  • 41. Koutsoyiannis D, Langousis A (2011) Precipitation, Treatise on Water Science, edited by P. Wilderer and S. Uhlenbrook, 2, 27–78. Academic Press, Oxford
  • 42. Koutsoyiannis D, Yao H, Georgakakos A (2008) Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods/Prévision du débit du Nil à moyen terme: une comparaison de méthodes stochastiques et déterministes. Hydrol Sci J 53:142–164
  • 43. Laaha G, Blöschl G (2005) Low flow estimates from short stream flow records—a comparison of methods. J Hydrol 306:264–286
  • 44. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436
  • 45. Lin J-Y, Cheng C-T, Chau K-W (2006) Using support vector machines for long-term discharge prediction. Hydrol Sci J 51:599–612
  • 46. Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S (2010) Recurrent neural network based language model. In: Interspeech, p 3
  • 47. Nayak PC, Sudheer K, Rangan D, Ramasastri K (2004) A neuro-fuzzy computing technique for modeling hydrological time series. J Hydrol 291:52–66
  • 48. Ouyang Q, Lu W (2018) Monthly rainfall forecasting using echo state networks coupled with data preprocessing methods. Water Resour Manag 32:659–674
  • 49. Papacharalampous G, Tyralis H, Koutsoyiannis D (2018a) One-step ahead forecasting of geophysical processes within a purely statistical framework. Geosci Lett 5:12
  • 50. Papacharalampous G, Tyralis H, Koutsoyiannis D (2018b) Predictability of monthly temperature and precipitation using automatic time series forecasting methods. Acta Geophys 66(4):807–831
  • 51. Papacharalampous G, Tyralis H, Koutsoyiannis D (2018c) Univariate time series forecasting of temperature and precipitation with a focus on machine learning algorithms: a multiple-case study from Greece. Water Resour Manag 32:5207–5239
  • 52. Papacharalampous GA, Tyralis H, Koutsoyiannis D (2019) Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-018-1638-6
  • 53. Pyrce R (2004) Hydrological low flow indices and their uses Watershed Science Centre, (WSC) Report
  • 54. Sahoo S, Russo T, Elliott J, Foster I (2017) Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US. Water Resour Res 53(5):3878–3895
  • 55. Sahoo BB, Jha R, Singh A, Kumar D (2018) Application of support vector regression for modeling low flow time series. KSCE J Civ Eng 23(2):923–934
  • 56. Salas JD (1993) Analysis and modeling of hydrologic time series. In: Maidment DR (ed) Handbook of hydrology, vol 19. McGraw Hill, New York, pp 19.1–19.72
  • 57. Sang Y-F (2013) A review on the applications of wavelet transform in hydrology time series analysis. Atmos Res 122:8–15
  • 58. Sang Y-F, Wang D, Wu J-C, Zhu Q-P, Wang L (2009) The relation between periods’ identification and noises in hydrologic series data. J Hydrol 368:165–177
  • 59. Schoups G, Van de Giesen N, Savenije H (2008) Model complexity control for hydrologic prediction. Water Resources Res 44:W00B03
  • 60. Sivapragasam C, Liong S-Y, Pasha M (2001) Rainfall and runoff forecasting with SSA–SVM approach. J Hydroinform 3:141–152
  • 61. Sivapragasam C, Vincent P, Vasudevan G (2007) Genetic programming model for forecast of short and noisy data. Hydrol Process 21:266–272
  • 62. Smakhtin V (2001) Low flow hydrology: a review. J Hydrol 240:147–186
  • 63. Srikanthan R, McMahon T (2001) Stochastic generation of annual, monthly and daily climate data: a review. Hydrol Earth Syst Sci Discuss 5:653–670
  • 64. Tegos A, Schlüter W, Gibbons N, Katselis Y, Efstratiadis A (2018) Assessment of environmental flows from complexity to parsimony—lessons from Lesotho. Water 10:1293
  • 65. Toth E, Brath A, Montanari A (2000) Comparison of short-term rainfall prediction models for real-time flood forecasting. J Hydrol 239:132–147
  • 66. Tyralis H, Koutsoyiannis D (2014) A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables. Clim Dyn 42:2867–2883
  • 67. Tyralis H, Papacharalampous G (2017) Variable selection in time series forecasting using random forests. Algorithms 10:114
  • 68. Tyralis H, Papacharalampous GA (2018) Large-scale assessment of Prophet for multi-step ahead forecasting of monthly streamflow. Adv Geosci 45:147–153
  • 69. Wang W-C, Chau K-W, Cheng C-T, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374:294–306
  • 70. WMO (2008) Manual on low flow estimation and prediction. WMO, Geneva
  • 71. Wunsch A, Liesch T, Broda S (2018) Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX). J Hydrol 567:743–758
  • 72. Xu L, Chen N, Zhang X, Chen Z (2018) An evaluation of statistical, NMME and hybrid models for drought prediction in China. J Hydrol 566:235–249
  • 73. Yaseen ZM, El-Shafie A, Jaafar O, Afan HA, Sayl KN (2015) Artificial intelligence based models for stream-flow forecasting: 2000–2015. J Hydrol 530:829–844
  • 74. Yaseen ZM, Jaafar O, Deo RC, Kisi O, Adamowski J, Quilty J, El-Shafie A (2016) Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. J Hydrol 542:603–614
  • 75. Yaseen ZM, Fu M, Wang C, Mohtar WHMW, Deo RC, El-Shafie A (2018) Application of the hybrid artificial neural network coupled with rolling mechanism and grey model algorithms for streamflow forecasting over multiple time horizons. Water Resour Manag 32(5):1883–1899
  • 76. Zhang D, Lindholm G, Ratnaweera H (2018a) Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring. J Hydrol 556:409–418
  • 77. Zhang J, Zhu Y, Zhang X, Ye M, Yang J (2018b) Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. J Hydrol 561:918–929
  • 78. Zounemat-Kermani M, Teshnehlab M (2008) Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Appl Soft Comput 8:928–936
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2129e76-e5ad-47e4-b654-ab2bcb480f51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.