Identyfikatory
Warianty tytułu
Modification of solid substrates by controlled adsorption of macroions
Języki publikacji
Abstrakty
Mechanisms of cationic macroion adsorption on negatively charged solid substrates comprising mica and silica were thoroughly discussed. Attention was focused on poly(allylamine hydrochloride) (PAH), poly(dimethyl-diallylammonium chloride) (PDDA) and poly-L-lysine (PLL) widely used in practice. The bulk physicochemical parameters controlling the macroion adsorption such as the diffusion coefficient, hydrodynamic diameter, intrinsic viscosity and electrophoretic mobility were discussed. The latter, experimentally accessible parameter, enables to determine the electrokinetic charge of macroion molecules, their isoelectric points and zeta potentials. On the other hand, the analysis of the hydrodynamic diameter and the intrinsic viscosity data confirmed a largely elongated shape of the molecules even for concentrated electrolyte solution. These results are used for a quantitative interpretation of macroion adsorption at solid substrates investigated using in situ streaming potential measurements. It is confirmed that the macroion mostly adsorb in the side-on orientation forming layers whose maximum coverage can be regulated by the ionic strength of the solution. This streaming potential method can also be used to determine the stability of the layers performing controlled desorption kinetic measurements. It is shown that at pH 7.4 the PDDA and PLL macroions form stable layers on solid substrates, which can be used for an efficient immobilization of negatively charged macroions and bioparticles comprising protein molecules and viruses.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1157--1179
Opis fizyczny
Bibliogr. 68 poz., tab., wykr.
Twórcy
autor
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
autor
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
Bibliografia
- [1] E.M. Wilts, J. Herzberger, T.E. Long, Polym. Int., 2018, 67, 799. L. Van Haver, S. Nayar, Algal Res., 2017, 24, 167.
- [2] K.E. Bremmell, G.J. Jameson, S. Biggs, Colloids Surf. A, 1998, 139, 199.
- [3] O.J. Rojas, P.M. Claesson, D. Muller, R.D. Neuman, J. Colloid Interface Sci., 1998, 205, 77.
- [4] O.J. Rojas, R.D. Neuman, P.M. Claesson, J. Colloid Interface Sci., 2001, 237, 104.
- [5] A. Toutianoush, B. Tieke, Mater. Sci. Eng. C, 2002, 22, 459.
- [6] I. Popa, B.P. Cahill, P. Maroni, G. Papastavrou, M. Borkovec, J. Colloid Interface Sci., 2007, 309, 28.
- [7] J. Junthip, N. Tabary, M. Maton, S. Ouerghemmi, J.N. Staelens, F. Cazaux, Ch. Neut, N. Blanchemain, B. Martel, Int. J. Pharm., 2020, 587, 119730.
- [8] S.-Ch. How, Y.-F. Chen, P.-L. Hsieh, S. S. Wang, J.-S. Jan, Colloids Surf. B, 2017, 153, 244.
- [9] C. Kirchner, A.M. Javier, A.S. Susha, A.L. Rogach, O. Kreft, G.B. Sükhorukov, W.J. Parak, Talanta, 2005, 67, 486.
- [10] J. Gummel, F. Cousin, F. Boué, J. Am. Chem. Soc., 2007, 129, 5806.
- [11] Y. Lu, J. Sun, J. Shen, Langmuir, 2008, 24, 8050.
- [12] C.L. Cooper, P.L. Dubin, A.B. Kayitmazer, S. Turksen, Curr. Opin. Colloid Interface Sci., 2005, 10, 52.
- [13] N. Dizge, R. Epsztein, W. Cheng, C. J. Porter, M. Elimelech, J. Membr. Sci., 2018, 549, 357.
- [14] G. Decher, J.D. Hong, J. Schmitt, Thin Solid Films, 1992, 210, 831.
- [15] G. Decher, J.B. Schlenoff, Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, 1st ed., Wiley-VCH, Weinheim, 2003.
- [16] L. Zhang, H. Chen, J. Sun, J. Shen, Chem. Mater., 2007, 19, 948.
- [17] P.T. Hammond, Curr. Opin. Colloid Interface Sci., 1999, 4, 430.
- [18] P.T. Hammond, Adv. Mater., 2004, 16, 1271.
- [19] W. Jian, S. Xu, J. Wang, S. Feng, J. of App. Polym. Sci., 2013, 129, 2070.
- [20] N. Reum, C. Fink-Straube, T. Klein, R.W. Hartmann, C.-M. Lehr, M. Schneider, Langmuir, 2010, 26, 16901.
- [21] M.R. Kreke, A.S. Badami, J.B. Brady, R. Michael Akers, A.S. Goldstein, Biomaterials, 2005, 26, 2975.
- [22] E.S. Forzani, V.M. Solís, E.J. Calvo, Anal. Chem., 2000, 72, 5300.
- [23] M.F. Hoover, H.E. Carr, Tappi, 1968, 51, 552.
- [24] I.-M. Hsing, Y. Xu, W. Zhao, Electroanalysis, 2007, 19, 755.
- [25] Z.-P. Han, J. Fu, P. Ye, X.-P. Dong, Enzyme Microb. Tech., 2013, 53, 79.
- [26] X. Zhao, Y. Zhang, Clean – Soil Air Water, 2013, 41, 37.
- [27] T.-J. Yu, J.L. Lippert, W.L. Peticolas, Biopolymers, 1973, 12, 2161.
- [28] L.M. Kaminskas, B.D. Kelly, V.M. McLeod, B.J. Boyd, G.Y. Krippner, E.D. Williams, C.J.H. Porter, Mol. Pharm., 2009, 6, 1190.
- [29] H.A. Clayton, R.F.L. James, N.J.M. London, Acta Diabetol., 1993, 30, 181.
- [30] P. de Vos, C.G. van Hoogmoed, J. van Zanten, S. Netter, J.H. Strubbe, H.J. Busscher, Biomaterials, 2003, 24, 305.
- [31] F. Lim, R.D. Moss, J. Pharm. Sci., 1981, 70, 351.
- [32] X. Wang, W. Wang, J. Ma, X. Guo, X. Yu, X. Ma, Biotechnol. Prog., 2006, 22, 791.
- [33] I.D. Dubé, C.J. Eaves, D.K. Kalousek, A.C. Eaves, Cancer Genet. Cytogen., 1981, 4, 157.
- [34] W. Gao, B. Feng, Y. Ni, Y. Yang, X. Lu, J. Weng, Appl. Surf. Sci., 2010, 257, 538.
- [35] B.R. Kranz, E. Thiel, S. Thierfelder, Blood, 1989, 73, 1942.
- [36] M. Chittchang, H.H. Alur, A.K. Mitra, T.P. Johnston, J. Pharm. Pharmacol., 2002, 54, 315.
- [37] A. Armanious, M. Aeppli, R. Jacak, D. Refardt, T. Sigstam, T. Kohn, M. Sander, Environ. Sci. Technol., 2016, 50, 732.
- [38] A. Michna, Z. Adamczyk, K. Kubiak, K. Jamroży, J. Colloid Interface Sci., 2014, 428, 170.
- [39] Z. Adamczyk, M. Morga, D. Kosior, P. Batys, J. Phys. Chem. C, 2018, 122, 23180.
- [40] L. Ubbelohde, Ind. Eng. Chem. Anal. Ed., 1937, 9, 85.
- [41] M. Morga, Z. Adamczyk, J. Colloid Interface Sci., 2013, 407, 196.
- [42] Z. Adamczyk, K. Jamroży, P. Batys, A. Michna, J. Colloid Interface Sci., 2014, 435, 182.
- [43] A. Einstein, Ann. Phys., 1910, 338, 1275.
- [44] M. Zembala, Z. Adamczyk, Langmuir, 2000, 16, 1593.
- [45] M. Zembala, Z. Adamczyk, P. Warszyński, Colloids Surf. A, 2001, 195, 3.
- [46] M. Smoluchowski, Bull. Acad. Sci. Cracovie Classe Sci. Math. Natur. 1903, 1, 182.
- [47] M. Zembala, Adv. Colloid Interface Sci., 2004, 112, 59.
- [48] M. Morga, A. Michna, Z. Adamczyk, Colloids Surf. A, 2017, 529, 302.
- [49] B. Jachimska, T. Jasiński, P. Warszyński, Z. Adamczyk, Colloids Surf. A, 2010, 355, 7.
- [50] M. Morga, Z. Adamczyk, S. Gödrich, M. Oćwieja, G. Papastavrou, J. Colloid Interface Sci., 2015, 456, 116.
- [51] A. Dos, V. Schimming, S. Tosoni, H.-H. Limbach, J. Phys. Chem. B, 2008, 112, 15604.
- [52] S.E. Burke, C.J. Barrett, Biomacromolecules, 2003, 4, 1773.
- [53] I. Dapić, D. Kovačević, Croat. Chem. Acta, 2011, 84, 185.
- [54] I. Zhitomirsky, J. Appl. Electrochem., 2004, 34, 235.
- [55] I. Zhitomirsky, Mater. Lett., 2004, 58, 420.
- [56] Henry D. C., Lapworth Arthur, Proc. R. Soc. A Math. Phys. Eng. Sci., 1931, 133, 106.
- [57] M. Dąbkowska, Z. Adamczyk, J. Colloid Interface Sci., 2012, 366, 105.
- [58] Z. Adamczyk, M. Nattich, M. Wasilewska, M. Zaucha, Adv. Colloid Interface Sci., 2011, 168, 3.
- [59] M. Morga, Z. Adamczyk, M. Oćwieja, J. Nanopart. Res., 2013, 15, 1.
- [60] H. Brenner, Int. J. Multiph. Flow, 1974, 1, 195.
- [61] Z. Adamczyk, M. Morga, D. Kosior, Sposób wyznaczania masy molowej polielektrolitów liniowych, zwłaszcza polilizyny, 2021, PL236792B1.
- [62] M. Morga, Z. Adamczyk, D. Kosior, M. Kujda-Kruk, Langmuir, 2019, 35, 12042.
- [63] D. Kosior, M. Morga, P. Maroni, M. Cieśla, Z. Adamczyk, J. Phys. Chem. C, 2020, 124, 4571.
- [64] Z. Adamczyk, K. Sadlej, E. Wajnryb, M. Nattich, M.L. Ekiel-Jeżewska, J. Bławzdziewicz, Adv. Colloid Interface Sci., 2010, 153, 1.
- [65] Z. Adamczyk, Particles at Interfaces: Interactions, Deposition, Structure, Elsevier, Amsterdam, 2017.
- [66] M. Oćwieja, Z. Adamczyk, Langmuir, 2013, 29, 3546.
- [67] K. Kubiak, Z. Adamczyk, M. Oćwieja, Langmuir, 2015, 31, 2988.
- [68] M. Oćwieja, J. Maciejewska-Prończuk, Z. Adamczyk, M. Roman, J. Colloid Interface Sci., 2017, 501, 192.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2121ee2-3e89-4fcd-9518-953edcf9b80b