PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical interpretation of a mathematical model of membrane gas separation with energy transfer by gas flowing in a channel to gas penetrating this channel from the adjacent channel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Comparative calculations with a mathematical model designed by the authors, which takes into consideration energy transfer from gas flowing through a given channel to gas which penetrates this channel from an adjacent channel, as well as a model which omits this phenomenon, respectively, were made for the process of separating gas mixtures carried out with an inert sweep gas in the fourend capillary membrane module. Calculations were made for the process of biogas separation using a PMSP polymer membrane, relative to helium as the sweep gas. It was demonstrated that omitting the energy transfer in the mathematical model might lead to obtaining results which indicate that the capacity of the process expressed by the value of feed flux subjected to separation is by several percent higher than in reality.
Rocznik
Strony
209--–222
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Warsaw University of Technology, Department of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Department of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Brun J.P., Larchet C., Melet R., Bulvestre G., 1985. Modelling of the pervaporation of binary mixtures through moderately swelling, non-reacting membranes. J. Membr. Sci., 23, 257–283. DOI: 10.1016/S0376-7388(00)83146-4.
  • 2. Coker D.T., Freeman B.D., Fleming G.K., 1998. Modeling multicomponent gas separation using hollow-fiber membrane contactors. AIChE J., 44, 1289–1302. DOI: 10.1002/aic.690440607.
  • 3. Davis R.A., 2002. Simple gas permeation and pervaporation membrane unit operation models for process simulators. Chem. Eng. Technol., 25, 717–722. DOI: 10.1002/1521-4125(20020709)25:7<717::AID-CEAT717>3.0.CO;2-N.
  • 4. Franz J., Schiebahn S., Zhao L., Riensche E., Scherer V., Stolten D., 2013. Investigating the influence of sweep gas on CO2/N2 membranes for post-combustion capture. Int. J. Greenhouse Gas Control, 13, 180–190. DOI: 10.1016/j.ijggc.2012.112.008.
  • 5. Hwang S.T., Thorman J M., 1980. The continuous membrane column. AIChE J., 26, 558–566. DOI: 10.1002/aic.690260406.
  • 6. Kerry, F. G., 2007. Industrial gas handbook: Gas separation and purification. CRC Press.
  • 7. Kim S., Hoek E.M., 2005. Modeling concentration polarization in reverse osmosis processes. Desalination, 186, 111–128. DOI: 10.1016/j.desal.2005.05.017.
  • 8. Kovvali A.S., Vemury S., Krovvidi K.R., Khan A.A., 1992. Models and analyses of membrane gas permeators. J. Membr. Sci., 73, 1–23. DOI: 10.1016/0376-7388(92)80182-J.
  • 9. Kundu P.K., Chakm, A., Feng X., 2013. Modelling of multicomponent gas separation with asymmetric hollow fibre membranes – methane enrichment from biogas. Can. J. Chem. Eng., 91, 1092–1102. DOI: 10.1002/cjce.21721.
  • 10. Li K., Acharya D.R., Hughes R., 1990. Mathematical modelling of multicomponent membrane permeators. J. Membr. Sci., 52, 205–219. DOI: 10.1016/S0376-7388(00)80486-X.
  • 11. Makaruk A., Harasek M., 2009. Numerical algorithm for modelling multicomponent multipermeator systems. J. Membr. Sci., 344, 258–265. DOI: 10.1016/j.memsci.2009.08.013.
  • 12. Marriott J., Sørensen E., 2003. A general approach to modelling membrane modules. Chem. Eng. Sci., 58, 4975– 4990. DOI: 10.1016/j.ces.2003.07.005.
  • 13. Mourgues A., Sanchez J., 2005. Theoretical analysis of concentration polarization in membrane modules for gas separation with feed inside the hollow-fibers. J. Membr. Sci., 252, 133–144. DOI: 10.1016/j.memsci.2004.11.024.
  • 14. Pan C.Y., 1986. Gas separation by high-flux, asymmetric hollow-fiber membrane. AIChE J., 32, 2020–2027. DOI: 10.1002/aic.690321212.
  • 15. Rautenbach R., Dahm W., 1986. Simplified calculation of gas-permeation hollow-fiber modules for the separation of binary mixtures. J. Membr. Sci., 28, 319–327. DOI: 10.1016/S0376-7388(00)82042-6.
  • 16. Scholz M., Harlacher T., Melin T., Wessling M., 2012. Modeling gas permeation by linking nonideal effects. Ind. Eng. Chem. Res., 52, 1079–1088. DOI: 10.1021/ie202689m.
  • 17. Smith S.W., Hall C.K., Freeman B.D., Rautenbach R., 1996. Corrections for analytical gas-permeation models for separation of binary gas mixtures using membrane modules. J. Membr. Sci., 118, 289–294. DOI: 10.1016/0376-7388(96)00128-7.
  • 18. Szwast M., FabianowskiW., Gradon´ L., Pia˛tkiewiczW., 2008. Koncepcja wytwarzania membran kapilarnych oraz metody oceny ich jakości. Przem. Chem., 87, 206–209.
  • 19. Szwast M., Polak D., Zalewski M., 2017. Novel gas separation membrane for energy industry. Desalin. Water Treat., 64, 255–259. DOI: 10.5004/dwt.2017.11388.
  • 20. Szwast M., Szwast Z., 2015. A mathematical model of membrane gas separation with energy transfer by molecules of gas flowing in a channel to molecules penetrating this channel from the adjacent channel. Chem. Process Eng., 36, 151–169. DOI: 10.1515/cpe-2015-0012.
  • 21. Szwast M., Szwast Z., Gra˛dkowski M., Pia˛tkiewicz W., 2013. Modelling of postproduction suspensions’ concentration processes by “batch” membrane microfiltration. Chem. Process Eng., 34, 3, 313–325. DOI: 10.2478/cpe-2013-0025.
  • 22. Takada K., Matsuya H., Masuda T., Hlgashlmura T., 1985. Gas permeability of polyacetylenes carrying substituents. J. Appl. Polym. Sci, 30, 1605–1616. DOI: 10.1002/app.1985.070300426.
  • 23. Teki´c M.N., Kurjaˇcki J., Vatai G., 1996. Modelling of batch ultrafiltration. Chem. Eng. J. Biochem. Eng. J., 61, 157–159. DOI: 10.1016/0923-0467(96)80023-6.
  • 24. Tessendorf S., Gani R., Michelsen M.L., 1999. Modeling, simulation and optimization of membrane-based gas separation systems. Chem. Eng. Sci., 54, 943–955. DOI: 10.1016/S0009-2509(98)00313-3.
  • 25. Thundyil M.J., KorosW.J., 1997. Mathematical modeling of gas separation permeators – for radial crossflow, countercurrent, and cocurrent hollow fiber membrane modules. J. Membr. Sci., 125, 275–291. DOI: 10.1016/S0376-7388(96)00218-9.
  • 26. Tsuru T., Hwang S.T., 1995. Permeators and continuous membrane columns with retentate recycle. J. Membr. Sci., 98, 57–67. DOI: 10.1016/0376-7388(94)00175-X.
  • 27. Wang R., Liu S.L., Lin T.T., Chung T.S., 2002. Characterization of hollow fiber membranes in a permeator using binary gas mixtures. Chem. Eng. Sci., 57, 967–976. DOI: 10.1016/S0009-2509(01)00435-3.
  • 28. Yampolskii Y., Pinnau I., Freeman B.D. (Ed.), 2006. Materials science of membranes for gas and vapor separation. Wiley.
  • 29. Zarzycki R., Chacuk A., 1993. Absorption: Fundamentals and applications. Pergamon Press.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2115555-e863-4d6e-882f-7ef711d3104f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.