Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Electrical discharges using a capacitance of 450 μF at 0.5, 1.0, and 1.5 kJ input energies were applied in a N2 atmosphere to obtain the mechanical alloyed Ti3Al powder without applying any external pressure. A solid bulk of nanostructured Ti3Al was obtained as short as 160 μsec by the Electrical discharge. At the same time, the surface has been modified into the form of Ti and Al nitrides due to the diffusion process of nitrogen to the surface. The input energy was found to be the most important parameter to affect the formation of a solid core and surface chemistry of the compact.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1293--1297
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Korea Aerospace University, Department of Materials Engineering, Goyang-Si 10510, Korea
autor
- Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05000, Korea
autor
- Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05000, Korea
autor
- Wonkwang Health Science University, Department of Dental Laboratory, Iksan 54538, Korea
autor
- Uiduk University, Division of Green Energy Engineering, Kyeongju 38004, Korea
autor
- Uiduk University, Division of Green Energy Engineering, Kyeongju 38004, Korea
autor
- Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05000, Korea
Bibliografia
- [1] K. Kasraee, A. Tayebifard, E. Salahi, J. Mater. Eng. Perfom. 22, 3742 (2013).
- [2] S. Sabooni, F. Karimzadeh, M.H. Abbasi, Bull. Mater. Sci. 35, 439 (2012).
- [3] J.J. Shon, Metals Mater. 3, 199 (1997).
- [4] A.K. Vasudevan, J.J. Petrovic, Mater. Sci. Eng. A 155, 1 (1992).
- [5] N. Forouzanmelu, F. Karimzadeh, H. Enayati, J. Alloys Comp. 471, 93 (2009).
- [6] A. Couret, G. Molenat, J. Galy, M. Thomas, Intermetallics 16, 1134 (2008).
- [7] P. Bhattacharya, P. Bellon, R.S. Averback, S.J. Hales, J. Alloys Comp. 368, 187 (2004).
- [8] M. Zha, H.Y. Wang, S.T. Li, S.L. Li, Q.L. Guan, Q.C. Jiang, Mater. Chem. Phys. 114, 709 (2009).
- [9] B.R. Krueger, A.H. Mutz, T. Vreeland, Metall. Trans. A 23, 55 (1992).
- [10] D.J. Im, Y.M. Kim, Y.K. Hong, S.J. Park, J. Korea Powder Metall. Inst. 21, 256 (2014).
- [11] S.H. Yang, W.Y. Kim, M.S. Kim, Intermetallics 11, 849 (2003).
- [12] R. Orru, R. Licheri, A.M. Locci, A. Cincotti, G. Cao, Mater. Sci. Eng. R 63, 127 (2009).
- [13] H.A. Calderon, V. Garibay-Febles, M. Umemoto, M. Yamaguchi, Mater. Sci. Eng. A 329, 196 (2002).
- [14] H.B. Yu, D.L. Zhang, Y.Y. Chen, P. Cao, B. Gabbitas, J. Alloys Comp. 474, 105 (2009).
- [15] S.L. Xiao, J. Tian, L.J. Xu, Y.Y. Chen, H.B. Yu, J.C. Han, Trans. Nonferrous Met. Soc. China 19, 1423 (2009).
- [16] S.L. Xiao, L.J. Xu, Y.Y. Chen, H.B. Yu, Trans. Nonferrous Met. Soc. China 22, 1086 (2012).
- [17] Y.J. Jo, Y.H. Kim, Y.H. Jo, J.G. Seong, S.Y. Chang, C.J. Van Tyne, W.H. Lee, J. NanoSci. Nanotechnol. 14, 8429 (2014).
- [18] Y.J. Jo, Y.H. Kim, Y.H. Jo, J.G. Seong, S.Y. Chang, P.J. Reucroft, S.B. Kim, W.H. Lee, Metals Mater. Int. 21, 337 (2015).
- [19] W.H. Lee, Y.J. Jo, Y.H. Kim, Y.H. Jo, J.G. Seong, C.J. Van Tyne, S.Y. Chang, Arch. Metall. Mater. 60, 1185 (2015).
- [20] Y.J. Jo, Y.H. Kim, Y.H. Jo, J.G. Seong, Y.K. Ko, S.B. Kim, S.Y. Chang, W.H. Lee, Metals Mater. Int. 21, 159 (2015).
- [21] Y.J. Jo, Y.H. Jo, J.G. Seong, Y.H. Kim, S.Y. Chang, M.S. Noh, H.G. Jeong, W.H. Lee, Surf. Eng. 31, 885 (2015).
- [22] Y.J. Jo, Y.H. Jo, J.G. Seong, Y.H. Kim, S.Y. Chang, W.H. Lee, Mater. Sci. Technol. 31, 989 (2015).
- [23] G. Greczynski, L. Hultman, Applied Surf. Sci. 387, 294 (2016).
- [24] P. Motamedi, K. Cadien, Applied Surf. Sci. 315, 104 (2014).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c20f757d-4f0b-489e-9e17-91502dafec19