Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The disposal of industrial by-product tailings has become the focus of mine follow-up work and an important issue in solving environmental pollution. This study explores the potential of utilizing iron tailings and phosphogypsum as cementitious materials, guided by the concept of comprehensive utilization. The mechanical property of cementitious materials was studied under curing 7 days, 14 days, and 28 days. The characteristics of the pores and products of the cementitious material were extracted and analyzed by industrial computed tomography (CT), X-ray diffraction (XRD), and scanning electron microscope (SEM). In the presence of phosphogypsum, more ettringite was generated in the cementitious system. The macropores in the system were filled, reducing the total porosity fraction of cementitious materials from 24.56% to 18.39%. The reduction of macropores significantly enhanced the compressive strength of cementitious material. The addition of fine phosphogypsum reduced the large porosity of the cementitious materials, which revealed the importance of the size in the cementitious material system. The effect of phosphogypsum content on the pore structure of cementitious material of iron tailings was studied. The new type of low-carbon cementitious material prepared from phosphogypsum and iron tailings provided a novel perspective for the multi-solid waste collaborative disposal in this study. In addition, the large amount of consumption of tailings reduced the pollution to the environment.
Czasopismo
Rocznik
Tom
Strony
art. no. e18, 2024
Opis fizyczny
Bibliogr. 52 poz., rys., wykr.
Twórcy
autor
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410000, China
autor
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
autor
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410000, China
autor
- Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Science, Chengdu 610041, China
Bibliografia
- 1. Yang G, Deng Y, Wang J. Non-hydrothermal synthesis and characterization of MCM-41 mesoporous materials from iron oretailing. Ceram Int. 2014;40(5):7401–6. https://doi.org/10.1016/j.ceramint.2013.12.086.
- 2. Liu K, Wang S, Quan X, Jing W, Xu J, Zhao N, Liu B, Ying H. Industrial byproduct Iron ore tailings as ecofriendly materials in the utilization of cementitious composites. Constr Build Mater.2023;372:130813. https://doi.org/10.1016/j.conbuildmat.2023.130813.
- 3. Kinnunen P, Ismailov A, Solismaa S, Sreenivasan H, Räisänen M-L, Levänen E, Illikainen M. Recycling minetailings in chemically bonded ceramics—a review. J Clean Prod.2018;174:634–49. https://doi.org/10.1016/j.jclepro.2017.10.280.
- 4. Quan X, Wang S, Liu K, Xu J, Zhao N, Liu B. Influence of molybdenum tailings by-products as fine aggregates on mechanical properties and microstructure of concrete. J Build Eng.2022;54:104677. https://doi.org/10.1016/j.jobe.2022.104677.
- 5. Dong K, Xie F, Wang W, Chang Y, Lu D, Gu X, Chen C. The detoxification and utilization of cyanide tailings: a critical review.J Clean Prod. 2021;302:126946. https://doi.org/10.1016/j.jclepro.2021.126946.
- 6. Li H, Long H, Zhang L, Yin S, Li S, Zhu F, Xie H. Effectiveness of microwave-assisted thermal treatment in the extraction of goldin cyanide tailings. J Hazardous Mater. 2020;384:121456. https://doi.org/10.1016/j.jhazmat.2019.121456.
- 7. Sako A, Semdé S, Wenmenga U. Geochemical evaluation of soil, surface water and groundwater around the Tongon gold mining area, northern Côte d’Ivoire, West Africa. J Afr Earth Sci.2018;145:297–316. https://doi.org/10.1016/j.jafrearsci.2018.05.016.
- 8. Schneider M, Romer M, Tschudin M, Bolio H. Sustainable cement production—present and future. Cement Concr Res.2011;41(7):642–50. https://doi.org/10.1016/j.cemconres.2011.03.019.
- 9. Liu Q, Li X, Cui M, Wang J, Lyu X. Preparation of eco-friendly one-part geopolymers from gold mine tailings by alkaline hydro-thermal activation. J Clean Prod. 2021;298:126806. https://doi.org/10.1016/j.jclepro.2021.126806.
- 10. Vorayos N, Vorayos N, Jaitiang T. Energy-environmental performance of Thai’s cement industry. Energy Rep. 2020;6:460–6.https://doi.org/10.1016/j.egyr.2019.11.103.
- 11. Wu Y, Lu B, Bai T, Wang H, Du F, Zhang Y, Cai L, Jiang C, Wang W. Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Constr Build Mater.2019;224:930–49. https://doi.org/10.1016/j.conbuildmat.2019.07.112.
- 12. Bhutta A, Farooq M, Zanotti C, Banthia N. Pull-out behavior of different fibers in geopolymer mortars: effects of alkaline solution concentration and curing. Mater Struct. 2016;50(1):80. https://doi.org/10.1617/s11527-016-0889-2.
- 13. Huang X, Li J-S, Jiang W, Chen Z, Wan Y, Xue Q, Liu L, Poon CS. Recycling of phosphogypsum and red mud in low carbon and green cementitious materials for vertical barrier. Sci Total Environ. 2022;838:155925. https://doi.org/10.1016/j.scitotenv.2022.155925.
- 14. Sithole NT, Mashifana T. Geosynthesis of building and construction materials through alkaline activation of granulated blast furnace slag. Constr Build Mater. 2020;264:120712. https://doi.org/10.1016/j.conbuildmat.2020.120712.
- 15. Ali B, Raza SS, Kurda R, Alyousef R. Synergistic effects of flyash and hooked steel fibers on strength and durability properties of high strength recycled aggregate concrete. Resour Conserv Recycl. 2021;168:105444. https://doi.org/10.1016/j.resconrec.2021.105444.
- 16. Villa C, Pecina ET, Torres R, Gómez L. Geopolymer synthesis using alkaline activation of natural zeolite. Constr Build Mater.2010;24(11):2084–90. https:// doi. org/ 10. 1016/j. conbu ildmat.2010.04.052.
- 17. Han B, Sun W, Yu S, Liu C, Yao S, Wu J. Performance comparison between neutralization tailings and flotation tailings used for backfill mix and mechanism analysis. Adv Mater Sci Eng.2016;2016:1–8. https://doi.org/10.1155/2016/1087269.
- 18. Ahmed MM, El-Naggar KAM, Tarek D, Ragab A, Sameh H, Zeyad AM, Tayeh BA, Maafa IM, Yousef A. Fabrication of thermal insulation geopolymer bricks using ferrosilicon slag and alumina waste. Case Stud Constr Mater. 2021;15:e00737. https://doi.org/10.1016/j.cscm.2021.e00737.
- 19. Koohestani B, Mokhtari P, Yilmaz E, Mahdipour F, Darban AK.Geopolymerization mechanism of binder-free mine tailings bysodium silicate. Constr Build Mater. 2021. https:// doi. org/ 10.1016/j.conbuildmat.2020.121217.
- 20. Zhang Y, Zhang S, Ni W, Yan Q, Gao W, Li Y. Immobilisation of high-arsenic-containing tailings by using metallurgical slag-cementing materials. Chemosphere. 2019;223:117–23. https://doi.org/10.1016/j.chemosphere.2019.02.030.
- 21. Li X, Du J, Gao L, He S, Gan L, Sun C, Shi Y. Immobilization of phosphogypsum for cemented paste backfill and its environmental effect. J Clean Prod. 2017;156:137–46. https://doi.org/10.1016/j.jclepro.2017.04.046.
- 22. Garg M, Jain N, Singh M. Development of alpha plaster from phosphogypsum for cementitious binders. Constr Build Mater.2009;23(10):3138–43. https:// doi. org/ 10. 1016/j. conbu ildmat.2009.06.024.
- 23. Oumnih S, Bekkouch N, Gharibi EK, Fagel N, Elhamouti K, El Ouahabi M. Phosphogypsum waste as additives to lime stabilization of bentonite. Sustain Environ Res. 2019;29(1):35. https://doi.org/10.1186/s42834-019-0038-z.
- 24. Contreras M, Teixeira SR, Santos GTA, Gázquez MJ, Romero M,Bolívar JP. Influence of the addition of phosphogypsum on someproperties of ceramic tiles. Constr Build Mater. 2018;175:588–600. https://doi.org/10.1016/j.conbuildmat.2018.04.131.
- 25. Yang J, Huang J, Su Y, He X, Tan H, Yang W, Strnadel B. Eco-friendly treatment of low-calcium coal fly ash for high pozzolani creactivity: a step towards waste utilization in sustainable building material. J Clean Prod. 2019;238:117962. https://doi.org/10.1016/j.jclepro.2019.117962.
- 26. Shen W, Zhou M, Zhao Q. Study on lime–fly ash–phosphogypsum binder. Constr Build Mater. 2007;21(7):1480–5. https://doi.org/10.1016/j.conbuildmat.2006.07.010.
- 27. Chen M, Liu P, Kong D, Wang Y, Wang J, Huang Y, Yu K, Wu N. Influencing factors of mechanical and thermal conductivity of foamed phosphogypsum-based composite cementitious materials.Constr Build Mater. 2022;346:128462. https://doi.org/10.1016/j.conbuildmat.2022.128462.
- 28. Huang Y, Lin Z. Investigation on phosphogypsum–steel slag–granulated blast-furnace slag–limestone cement. Constr BuildMater. 2010;24(7):1296–301. https:// doi. org/ 10. 1016/j. conbuildmat.2009.12.006.
- 29. Liu L, He Z, Cai X, Fu S. Application of low-field NMR to thepore structure of concrete. Appl Magn Reson. 2021;52(1):15–31.https://doi.org/10.1007/s00723-020-01229-7.
- 30. Xu F, Wang S, Li T, Li Z. Effect of metakaolin on the mechanical properties and pore characteristics of fiber-reinforced tailing recycled aggregate concrete. Structures. 2022;35:15–25. https://doi.org/10.1016/j.istruc.2021.10.071.
- 31. Yang T, Zhu H, Zhang Z. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars. Constr Build Mater. 2017;153:284–93.https://doi.org/10.1016/j.conbuildmat.2017.05.067.
- 32. Hao X, Liu X, Zhang Z, Zhang W, Lu Y, Wang Y, Yang T. In-depth insight into the cementitious synergistic effect of steel slagand red mud on the properties of composite cementitious materials. J Build Eng. 2022;52:104449. https://doi.org/10.1016/j.jobe.2022.104449.
- 33. Bossa N, Chaurand P, Vicente J, Borschneck D, Levard C, Aguerre-Chariol O, Rose J. Micro-and nano-X-ray computed-tomography: A step forward in the characterization of thepore network of a leached cement paste. Cement Concr Res.2015;67:138–47. https://doi.org/10.1016/j.cemconres.2014.08.007.
- 34. Chung S-Y, Kim J-S, Stephan D, Han T-S. Overview of the use of micro-computed tomography (micro-CT) to investigate the relation between the material characteristics and properties of cement-based materials. Constr Build Mater. 2019;229:116843.https://doi.org/10.1016/j.conbuildmat.2019.116843.
- 35. Shin Y, Park HM, Park J, Cho H, Oh S-E, Chung S-Y, Yang B. Effect of polymer binder on the mechanical and microstructural properties of pervious pavement materials. Constr Build Mater.2022;325:126209. https://doi.org/10.1016/j.conbuildmat.2021.126209.
- 36. Chung S-Y, Sikora P, Stephan D, Abd Elrahman M. The effect of lightweight concrete cores on the thermal performance of vacuum in sulation panels. Materials. 2020. https://doi.org/10.3390/ma13112632.
- 37. Chen S, Ruan S, Zeng Q, Liu Y, Zhang M, Tian Y, Yan D. Porestructure of geopolymer materials and its correlations to engineering properties: a review. Constr Build Mater. 2022. https://doi.org/10.1016/j.conbuildmat.2022.127064.
- 38. Cid HE, Carrasco-Nunez G, Manea VC. Improved method for effective rock microporosity estimation using X-ray microtomography. Micron. 2017;97:11–21. https://doi.org/10.1016/j.micron.2017.01.003.
- 39. Shin Y, Park HM, Park J, Cho H, Oh S-E, Chung S-Y, Yang B. Effect of polymer binder on the mechanical and microstructural properties of pervious pavement materials. Constr Build Mater.2022. https://doi.org/10.1016/j.conbuildmat.2021.126209.
- 40. Ruan Y, Jamil T, Hu C, Gautam BP, Yu J. Microstructure and mechanical properties of sustainable cementitious materials with ultra-high substitution level of calcined clay and limestone powder. Constr Build Mater. 2022;314:125416. https:// doi. org/ 10.1016/j.conbuildmat.2021.125416.
- 41. Zhang F, Li Y, Zhang J, Gui X, Zhu X, Zhao C. Effects of slag-based cementitious material on the mechanical behavior and heavy metal immobilization of mine tailings based cemented paste backfill. Heliyon. 2022. https://doi.org/10.1016/j.heliyon.2022.e10695.
- 42. Ma F, Chen L, Lin Z, Liu Z, Zhang W, Guo R. Microstructureand key properties of phosphogypsum-red mud-slag composite cementitious. Materials. 2022;15(17):6096. https://doi.org/10.3390/ma15176096.
- 43. Han Q, Wang A, Zhang J. Research on the early fracture behavior of fly ash-based geopolymers modified by molybdenum tailings. JClean Prod. 2022. https://doi.org/10. 1016/j.jclepro. 2022. 132759.
- 44. Maruthupandian S, Chaliasou A, Kanellopoulos A. Recycling mine tailings as precursors for cementitious binders—Methods, challenges and future outlook. Consr Build Mater. 2021. https://doi.org/10.1016/j.conbuildmat.2021.125333.
- 45. Snoeck D, Dewanckele J, Cnudde V, De Belie N. X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers. Cement Concr Compos. 2016;65:83–93. https://doi.org/10.1016/j.cemconcomp.2015.10.016.
- 46. Wu Z, Wei Y, Wang S, Chen J. Application of X-ray micro-CT for quantifying degree of hydration of slag-blended cement paste. JMater Civil Eng. 2020;32(3):04020008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003082.
- 47. da Silva ÍB. X-ray computed microtomography technique applied for cementitious materials: a review. Micron. 2018;107:1–8.https://doi.org/10.1016/j.micron.2018.01.006.
- 48. Cooper SJ, Bertei A, Shearing PR, Kilner JA, Brandon NP. Tau-Factor: an open-source application for calculating tortuosity factors from tomographic data. Software X. 2016;5:203–10. https://doi.org/10.1016/j.softx.2016.09.002.
- 49. Song R, Zheng L, Wang Y, Liu J. Effects of pore structure on sandstone mechanical properties based on microct reconstruction model. Adv Civil Eng. 2020;2020:9085045. https://doi.org/10.1155/2020/9085045.
- 50. Bernal SA, de Gutierrez RM, Provis JL, Rose V. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkalisilicate-activated slags. Cement Concr Res. 2010;40(6):898–907.https://doi.org/10.1016/j.cemconres.2010.02.003.
- 51. Provis JL, van Deventer JSJ. Geopolymerisation kinetics. 1In situ energy-dispersive X-ray diffractometry. Chem Eng Sci.2007;62(9):2309–17. https://doi.org/10.1016/j.ces.2007.01.027.
- 52. Wang Y, Liu X, Zhu X, et al. Synergistic effect of red mud, desulfurized gypsum and fly ash in cementitious materials: Mechanical performances and microstructure. Constr Build Mater.2023;404:133302.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c20c2793-4022-436b-8b75-6e2341500edf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.