PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing the reconfigurability of special purpose machine tools using mechanical module interfaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this paper is to introduce a solution that can enhance the reconfigurability of special purpose machines (SPMs). This is because SPMs can be used in different configurations and the reconfiguring time for these machines can be crucial. Therefore, it is important to reduce this time in order to enhance the performance of SPMs. Design/methodology/approach: A mechanical adapter is proposed as a solution to achieve the purpose of this paper. The design of the adapter is based on Multi Coupling (MC) type, and its functionality is based on “Plug and Produce”. This adapter is used to modify an SPM element called workpiece transfer in order to accommodate two types of chucks without the need to change the workpiece transfer. The performance criteria are analysed and investigated for this adapter. Findings: The proposed solution will enhance the reconfigurability of SPMs. This is because it will reduce the number of elements that are needed for reconfiguration. As a result, the time and cost for the reconfiguration will be reduced considerably. Research limitations/implications: Because SPMs have several types of elements, adapting the proposed solutions to be used for all elements can be a complex process. Therefore, more investigation and analysis need to be carried out in order to build a complete adapter system for SPMs. Practical implications: SPMs are already used widely in manufacturing. However, they are considered relatively expensive compared to the traditional machines tools because they are applied for special applications. The proposed solution will help to overcome this problem and make SPMs applicable for wider applications. Originality/value: The proposed solution is the first attempt in terms of enhancing the performance of SPMs. This can bring considerable benefits to the end users in manufacturing, who are using SPMs, in order to reduce the reconfiguration time and cost for these machine tools.
Rocznik
Strony
56--66
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
  • School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
autor
  • School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
Bibliografia
  • [1] Z. Xu, Modular Architecture Design of Reconfigurable Machine Tools for Agile Manufacturing, University of Toronto, Canada, 2006.
  • [2] U. Farhan, M. Tolouei-Rad, A. Osseiran, Indexing and retrieval using case-based reasoning in special purpose machine designs, The International Journal of Advanced Manufacturing Technology 92/5-8 (2017) 2689-2703, doi: https://doi.org/10.1007/s00170-017-0274-5.
  • [3] Z.J. Pasek, Challenges in the Design of Reconfigurable Machine Tools, in: A.I. Dashchenko (Ed.), Reconfigurable Manufacturing Systems and Transformable Factories, Berlin-Heidelberg, Springer, 2006, 141-154.
  • [4] Y.-M. Moon, S. Kota, Design of reconfigurable machine tools, Journal of Manufacturing Science and Engineering 124 (2002) 480-483, doi: 10.1115/1.1452748.
  • [5] H. Azulay, J.K. Mills, B. Benhabib, A. Multi-Tier Design Methodology for Reconfigurable Milling Machines, Journal of Manufacturing Science and Engineering 136/4 (2014) 041007, doi: 10.1115/1.4027315.
  • [6] M.G. Mehrabi, A.G. Ulsoy, Y. Koren, Reconfigurable manufacturing systems: key to future manufacturing, Journal of Intelligent Manufacturing 136/4 (2000) 403-419, https://doi.org/10.1023/A:108930403506.
  • [7] H.-P. Wiendahl, H.A. ElMaraghy, P. Nyhuis, M.F. Zäh, H.-H. Wiendahl, N. Duffie, M. Brieke, Changeable manufacturing-classification, design and operation, CIRP Annals – Manufacturing Technology 56/2 (2007) 783-809, doi: https://doi.org/10.1016/j.cirp.2007.10.003.
  • [8] R. Katz, Design principles of reconfigurable machines, The International Journal of Advanced Manufacturing Technology 34 (2007) 430-439, doi: https://doi.org/10.1007/s00170-006-0615-2.
  • [9] Y.-M. Moon, S. Kota, Generalized kinematic modeling of reconfigurable machine tools, Transactions – American Society of Mechanical Engineers Journal of Mechanical Design 124 (2002) 47-51, doi: 10.1115/1.1424892.
  • [10] U. Farhan, M. Tolouei-Rad, A. Osseiran, Use of AHP in decision-making for machine tool configurations, Journal of Manufacturing Technology Management 27 (2016) 874-888, doi: https://doi.org/10.1108/JMTM-02-2016-0028.
  • [11] Y.-M. Moon, Reconfigurable machine tool design: Theory and application, Ph.D. thesis, University of Michigan, Michigan, 2000.
  • [12] E. Abele, A. Wörn, J. Fleischer, J. Wieser, P. Martin, R. Klöpper, Mechanical module interfaces for reconfigurable machine tools, Production Engineering 1/4 (2007) 421-428, doi: https://doi.org/10.1007/s11740-007-0057-1.
  • [13] ] E. Abele, A. Wörn, C. Stroh, J. Elzenheimer, Multi machining technology integration in RMS, Proceedings of CIRP sponsored 3rd Conference on Reconfigurable Manufacturing, University of Michigan, Ann Arbor, USA, 2005.
  • [14] H. Li, R. Landers, S. Kota, A review of feasible joining methods for reconfigurable machine tool components, Proceedings of Japan-USA Symposium of Flexible Automation, 2000, 23-26.
  • [15] Suhner, Automation Expert, Available: https://www.suhner-automation-expert.com/site/index.cfm/id_art/7137/vsprache/EN/ (2014, 21 December 2015).
  • [16] W. Kajzer, A. Kajzer, M. Antonowicz, Biomechanical analysis of the femur-Dynamic Condylar Screw (DCS) system, Archives of Materials Science and Engineering 79/1 (2016) 19-26, doi: 10.5604/18972764.1227659.
  • [17] B. Śmielak, J. Świniarski, E. Wołowiec-Korecka, L. Klimek, 2D-Finite element analysis of inlay-, onlay bridges with using various materials, Archives of Materials Science and Engineering 79/2 (2016) 71-78, doi: 10.5604/18972764.1229427.
  • [18] C. Sousa, P. Marcondes, S. Lajarin, Optimization methodology of a product of white line by computational analysis using statistical approach and finite elements, Archives of Materials Science and Engineering 81/1 (2016) 30-36, doi: 10.5604/18972764.1229623.
  • [19] N. Okubo, Y. Yoshida, T. Hoshi, Application of model analysis to machine tool structures, CIRP Annals – Manufacturing Technology 31 (1982) 243-246, doi: https://doi.org/10.1016/S0007-8506(07)63306-X.
  • [20] J.-P. Hung, Y.-L. Lai, T.-L. Luo, H.-C. Su, Analysis of the machining stability of a milling machine considering the effect of machine frame structure and spindle bearings: experimental and finite element approaches, International Journal of Advanced Manufacturing Technology 68 (2013) 2393-2405, doi: https://doi.org/10.1007/s00170-013-4848-6.
  • [21] A.U. Patwari, W.F. Faris, A.K.M. Nurul Amin, S.K. Loh, Dynamic modal analysis of vertical machining centre components, Advances in Acoustics and Vibration 2009 (2009) 1-10, doi: https://dx.doi.org/10.1155/2009/508076.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2042dee-6c0c-460d-8b23-62808754ef3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.