PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selection of the Friction Model for Numerical Analyses of the Impact of Longitudinal Vibration on Stick-Slip Movement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the experimental and numerical tests presented in this paper was to indicate a friction model suitable for simulation analyses of the impact of longitudinal tangential vibrations on stick-slip movement in sliding motion. The vibration parallel to the shift direction are forced in the contact zone of a shifted body and the base. They can cause partial or total reduction of the stick-slip phenomenon or even reduce the value of necessary drive force. The time characteristics of drive force were determined experimentally and in simulation for two cases, i.e. at a motionless or vibrating base. Simulation analyses were carried out in accordance with the described computational procedures implemented in Matlab-Simulink environment. Four models of friction were tested in the presented studies: Dahl, Karnopp, Reset Integrator and LuGre. Experimental tests were carried out on a specially designed tests stand. The Root Mean Square Error (RMSE) was used to compare the results of numerical calculations with results of experimental tests. The performed qualitative assessment and the determined RMSE values indicated that the LuGre and the Reset Integrator models ensure he best consistency of model and experimental time characteristics of the driving force.
Twórcy
  • Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, str. Piastów 19, 70-310 Szczecin, Poland
autor
  • Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, str. Piastów 19, 70-310 Szczecin, Poland
Bibliografia
  • 1. Johannes V., Green M., Brockley C. The role of the rate of application of the tangential force in determining the static friction coefficient. Wear. 1973;24(3):381-385.
  • 2. Rabinowicz E. The nature of the static and kinetic coefficients offriction. Journal of Applied Physics. 1951;22(11):1373-1379.
  • 3. Richardson R., Nolle H. Surface friction under time-dependent loads. Wear. 1976;37(1):87–101.
  • 4. Courtney-Pratt J.S., Eisner E. The effect of a tangential force on the contact of metallic bodies. Proc. R. Soc. London, Ser. A. 1957;238(1215):529-550.
  • 5. Armstrong-Helouvry B., Dupont P., Canudas de Witt C. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica. 1994;30(7):1083-1138.
  • 6. Kröger M., Neubauer M., Popp K. Experimental investigation on the avoidance of self-excited vibrations, Philosophical Transactions of The Royal Society A: Mathematical, Physical Engineering Science. 2008;366:785-810.
  • 7. Wojewoda J., Stefański A., Wiercigroch M., Kapitaniak T. Hysteretic effects of dry friction: modelling and experimental studies, Philosophical Transactions of The Royal Society A: Mathematical, Physical Engineering Science. 2008;366:747-765.
  • 8. Yanada H., SekikawaY. Modeling of dynamic behaviors of friction, Mechatronics. 2008;18(7):330-339.
  • 9. Bell R., Burdekin M. A study of the stick-slip motion of machine tool feed drives. Proceedings of the Institution of Mechanical Engineers. 1969;184(30):543-560.
  • 10. Rabinowicz E. The intrinsic variables affecting the stick-slip process. Proceedings of the Physical Society. 1958;71(4):668-675.
  • 11. Pennestrì E., Rossi V., Salvini P., Valentini P.P. Review and comparison of dry friction force models. Nonlinear Dynamics. 2016;83(4):1785-1801.
  • 12. Nakano K., Maegawa S. Occurrence limit of stickslip: dimensionless analysis for fundamental design of robust-stable systems. Lubrication Science. 2010;22:1-18.
  • 13. Tang L., Zhu X., Li J. Effects of the synchronous variation of the static and the kinetic friction coefficients on stick-slip vibration of drillstring. Iranian Journal of Science and Technology Transactions of Mechanical Engineering. 2019;43:275-283.
  • 14. Maegawa S., Itoigawa F. Design method for suppressing stick-slip using dynamic vibration absorber. Tribology International. 2019;140:1-8.
  • 15. Mfoumou G.S., Kenmoé G.D., Kofané T.C. Computational algorithms of time series for stick-slip dynamics and time-delayed feedback control of chaos for a class of discontinuous friction systems. Mechanical Systems and Signal Processing. 2019;119:399-419.
  • 16. Rymuza Z. The stick-slip phenomenon. PAK. 1992;12:290-295. (in Polish).
  • 17. Qiu H., Yang J., Butt S. Investigation on bit stickslip vibration with random friction coefficients. Journal of Petroleum Science and Engineering. 2018;164:127-139.
  • 18. Tang L., Zhu X., Shi C., Tang J., Xu D. Study of the influences of rotary table speed on stickslip vibration of the drilling system. Petroleum. 2015;1(4):382-387.
  • 19. Sagert C., Di Meglio F., Krstic M., Rouchon P. Backstepping and flatness approaches for stabilization of the stick-slip phenomenon for drilling. IFAC Proceedings Volumes. 2013;46(2):779-784.
  • 20. Saldivar B., Mondié S., Loiseau J.-J., Rasvan V. Stick-slip oscillations in oillwell drilstrings: distributed parameter and neutral type retarded model approaches. IFAC Proceedings Volumes. 2011;44(1):284-289.
  • 21. F.Aarsnes U.J., Di Meglio F., Shor R.J. Avoiding stick-slip vibrations in drilling through startup trajectory design. Journal of Process Control. 2018;70:24-35.
  • 22. Kamel J.M., Yigit A. Modeling and analysis of stick-slip and bit bounce in oil well drillstrings equipped with drag bits. Journal of Sound and Vibration. 333;2014:6885–6899.
  • 23. Tang L., Zhu X., Qian X., Shi C. Effects of weight on bit on torsional stick-slip vibration of oilwell drill string. Journal of Mechanical Science and Technology. 2017;31(10):4589-4597.
  • 24. Zhu X., Tang L., Yang Q. A literature review of approaches for stick-slip vibration suppression in oilwell drillstring. Advances in Mechanical Engineering. 2014;967952:1-17.
  • 25. Kligerman Y., Varenberg M. Elimination of stickslip motion in sliding of split or rough surface. Tribology Letters. 53(2);2014:395-399.
  • 26. Popp K., Rudolph M. Vibration control to avoid stick-slip motion, Journal of Vibration and Control. 2004;10:1585-1600.
  • 27. Mokhtar M.O.A., Younes Y.K., El Mahdy T.H., Attia N.. A theoretical and experimental study on dynamics of sliding bodies with dry conformal contacts. Wear. 1998;218(2):172-178.
  • 28. Abdo J., Tahat M., Abouelsoud A., Danish M. The effect of frequency of vibration and humidity on the stick-slip amplitude. International Journal of Mechanics and Materials in Design. 2010;6(1):45-51.
  • 29. Abdo J., Zaier R. A novel pin-on-disk machine for stick-slip measurements. Materials and Manufacturing Processes. 2012;27:751-755.
  • 30. Canudas de Witt C., Olsson H., Aström K.J., Lischinsky P. A new model for control of systems with friction. IEEE Transactions of Automatic Control. 1995;40(3):419-425.
  • 31. Neubauer M., Neuber C-C., Popp K. Control of stick-slip vibrations. Solid Mechanics and its Applications. 2005;130:223-232.
  • 32. Ozaki S., Hashiguchi K. Numerical analysis of stick-slip instability by a rate-dependent elastoplastic formulation for friction. Tribology International. 2010;43:2120-2133.
  • 33. Zhang S.L., Valentine J.M. Stick-slip and temperature effect in the scratching of materials. Tribology Letters. 2002;12(4):195-202.
  • 34. Zuleeg J. How to measure, prevent, and eliminate stick-slip and noise generation with lubricants, SAE Technical Paper. 2015;2015-01-2259:1-7.
  • 35. Abdo J., Tahat M., Abouelsoud A. The effect of excitation frequencies on stick-slip amplitude, 3rd International Conference on Integrity, Reliability and Failure, Porto/Portugal 2009, 319-320.
  • 36. Leus M., Abrahamowicz M. Experimental investigations of elimination the stick-slip phenomenon in the presence of longitudinal tangential vibration. Acta Mechanica et Automatica. 2019;13(1):45-50.
  • 37. Popov V.L., Starcevic J., Filippov A.E. Influence of ultrasonic in-plane oscillations on static and sliding friction and intrinsic length scale of dry friction processes. Tribology Letters. 2010;39(1):25-30.
  • 38. Popp K., Rudolph M. Avoidance of stick-slip motion by vibration control. Proceedings in Applied Mathematics and Mechanics. 2003;3:120-121.
  • 39. Rybkiewicz M., Gutowski P., Leus M. Experimental and numerical analysis of stick-slip suppression with the use of tangential vibration. Journal of Theoretical and Applied Mechanics (accepted for publication) 2020.
  • 40. Teidelt E., Starcevic J., Popov V.L. Influence of ultrasonic oscillation on static and sliding friction. Tribology Letters. 2012;48(1):51-62.
  • 41. Haessig Jr. D.A., Friedland B. On the Modeling and Simulation of Friction, Journal of Dynamic Systems, Measurement, and Control. 1991;113(3):354-362.
  • 42. Liu Y.F., Li J., Zhang Z.M., Hu X.H., Zhang W.J. Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mechanical Sciences. 2015;6(1):15-28.
  • 43. Dahl P. Solid friction damping of mechanical vibrations. AIAA Journal. 1976;14(12):1675-82.
  • 44. Gutowski P., Leus M. The effect of longitudinal tangential vibrations on friction and driving forces in sliding motion. Tribology International. 2012;55:108-118.
  • 45. Karnopp D. Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems. Journal of Dynamic Systems, Measurement, and Control. 1985;107(1):100-103.
  • 46. Olsson H. Control systems with friction. Doctoral thesis. Department of Automatic Control. Lund Institute of Technology; 1996.
  • 47. Bliman P.A. Mathematical study of the Dahl’s friction model. European Journal of Mechanics, A/Solids. 1992;6:835-848.
  • 48. Leus M., Gutowski P. The experimental analysis of the tangential stiffness of the flat contact joint. Modelling in Engineering. 2009;6(7):85-192.
  • 49. Leus M., Gutowski P. Practical possibilities of utilization of tangential longitudinal vibrations for controlling the friction force and reduction of drive force in sliding motion. Mechanics and Mechanical Engineering. 2011;15(4):103-113.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c201008a-a4f7-4956-bf2e-0042371fdb04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.