Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study presents the fabrication and characterization of functionally graded Al2O3-Ni ceramic-metal composites using centrifugal gel casting with 2-carboxyethyl acrylate (CEA) as the monomer. Two Series of composites were produced under different centrifugal conditions to investigate their influence on nickel distribution, microstructure, and mechanical performance. The CEA-based gel system enabled the formation of dense green bodies with improved phase dispersion and sintering behavior. Microstructural analysis revealed that lower rotational speed and longer casting time (2500 rpm, 110 min) led to a more uniform radial distribution of nickel particles and reduced agglomeration. This microstructural improvement resulted in significantly higher compressive strength (1620 kN) compared to the faster cast series (977 kN). Digital image correlation confirmed more distributed strain fields and delayed fracture in the optimized samples. These findings demonstrate that casting parameters and monomer chemistry can be effectively tailored to engineer dense, robust, and gradient-structured ceramic–metal composites for high-performance applications.
Wydawca
Czasopismo
Rocznik
Strony
85--103
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
autor
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
autor
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
autor
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
- Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
Bibliografia
- 1. Sun M., Ling Z., Mao J., Zeng X., Yuan D., Liu M.: Ammonia-Based Clean Energy Systems: A Review of Recent Progress and Key Challenges. Energies 18 (2025), 2845. https://doi.org/10.3390/en18112845
- 2. Abolore R.S., Jaiswal S., Jaiswal A.K.: Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydrate Polymer Technologies and Applications 7 (2024), 100396. https://doi.org/10.1016/j.carpta.2023.100396.
- 3. Gouda A., Merhi N., Hmadeh M., Cecchi T., Santato C., Sain M.: Sustainable strategies for converting organic, electronic, and plastic waste from municipal solid waste into functional materials. Global Challenges 9 (2025), 2400240. https://doi.org/10.1002/gch2.20240024
- 4. Angelakis, A. N., Passchier, C. W., Valipour, M., Krasilnikoff, J. A., Tzanakakis, V. A., Ahmed, A. T., Baba, A., Kumar, R., Bilgic, E., Capodaglio, A. G., & Dercas, N. (2023). Evolution of Tunneling Hydro-Technology: From Ancient Times to Present and Future. Hydrology, 10(9), (2023), 190. https://doi.org/10.3390/hydrology10090190
- 5. Farh H.M.H., Ben Seghier M.E.A., Zayed T.: A comprehensive review of corrosion protection and control techniques for metallic pipelines. Engineering Failure Analysis 143 (2023), 106885. https://doi.org/10.1016/j.engfailanal.2022.106885.
- 6. Velasco D.C.R., Gonçalves V.P.D., Oliveira M.P., Simonassi N.T., Lopes F.P.D., Vieira C.M.F.: Industrial piping system: Design and corrosion protection. Surfaces 8 (2025), 18. https://doi.org/10.3390/surfaces8010018.
- 7. Waqar M., Memon A.M., Sabih M., Alhems L.M.: Composite pipelines: Analyzing defects and advancements in non-destructive testing techniques. Engineering Failure Analysis 157 (2024), 107914. https://doi.org/10.1016/j.engfailanal.2023.107914
- 8. Ali S., Wang X., Rasool G., Ali A., Ali R., ur-Rehman N., Razzaq I.: Theoretical study of the optical and thermodynamic properties of aluminum oxide (Al₂O₃) with high pressures at elevated temperatures. Modern Physics Letters B 39 (2025), 2350104. https://doi.org/10.1142/S0217984925501040.
- 9. Ruys A.: Alumina as a wear-resistant industrial ceramic. In: Ruys A. (Ed.), Alumina Ceramics, Woodhead Publishing Series in Biomaterials, Woodhead Publishing (2019), 369–411. https://doi.org/10.1016/B978-0-08-102442-3.00012-9.
- 10. Abyzov A.M.: Aluminum Oxide and Alumina Ceramics (review). Part 1. Properties of Al₂O₃ and Commercial Production of Dispersed Al₂O₃. Refractories and Industrial Ceramics 60 (2019), 24–32. https://doi.org/10.1007/s11148-019-00304-2
- 11. [11] Sun Y., Li S., Zhao Q., Cong Z., Xia Y., Jiao X., et al.: Recent Advancements in Alumina-Based High-Temperature Insulating Materials: Properties, Applications, and Future Perspectives. High-Temperature Materials 2 (2025), 10001. 10.70322/htm.2025.10001
- 12. Mohammed A.A., Khodair Z.T., Khadom A.A.: Preparation, characterization and application of Al₂O₃ nanoparticles for the protection of boiler steel tubes from high temperature corrosion. Ceramics International 46 (2020), 26945–26955. https://doi.org/10.1016/j.ceramint.2020.07.172
- 13. Smallman R.E., Bishop R.J.: Ceramics and glasses. Modern Physical Metallurgy and Materials Engineering, R.E. Smallman, R.J. Bishop, Butterworth-Heinemann, Oxford, 1999, 320–350.
- 14. Baudín C.: Alumina, Structure and Properties. Encyclopedia of Materials: Technical Ceramics and Glasses, M. Pomeroy, Elsevier, Amsterdam, 2021, 25–46.
- 15. Metson J.: Production of alumina. Fundamentals of Aluminium Metallurgy, R. Lumley, Woodhead Publishing, Cambridge, 2011, 23–48.
- 16. Hutsaylyuk V., Student M., Posuvailo V., Student O., Hvozdetskyi V., Maruschak P., Zakiev V.: The role of hydrogen in the formation of oxide-ceramic layers on aluminum alloys during their plasma-electrolytic oxidation. Journal of Materials Research and Technology 14 (2021), 1682–1696. https://doi.org/10.1016/j.jmrt.2021.07.082.
- 17. Hutsaylyuk V., Student M., Posuvailo V., Student O., Sirak Y., Hvozdetskyi V., Maruschak P., Veselivska H.: The properties of oxide-ceramic layers with Cu and Ni inclusions synthesizing by PEO method on top of the gas-spraying coatings on aluminium alloys. Vacuum 179 (2020), 109514. https://doi.org/10.1016/j.vacuum.2020.109514.
- 18. Zygmuntowicz J., Wiecińska P., Miazga A., Konopka K., Szafran M., Kaszuwara W.: Thermoanalytical studies of the ceramic-metal composites obtained by gel-centrifugal casting. Journal of Thermal Analysis and Calorimetry 133 (2018), 303–312. https://doi.org/10.1007/s10973-017-6647-z
- 19. Ruys A.: Processing, structure, and properties of alumina ceramics. In: Ruys A. (Ed.), Alumina Ceramics, Woodhead Publishing Series in Biomaterials, Woodhead Publishing (2019), 71–121. https://doi.org/10.1016/B978-0-08-102442-3.00004-X.
- 20. Piza M.M.T., Bergamo E.T.P., Campos T.M.B., Carvalho L.F., Goulart C.A., Gutierres E., Lopes A.C.O., Jalkh E.B.B., Bonfante E.A.: Alumina-toughened zirconia nanocomposite: Aging effect on microstructural, optical, and mechanical properties. Dental Materials 39 (2023), 1022–1031. https://doi.org/10.1016/j.dental.2023.09.005.
- 21. Gogotsi G.A.: Fracture toughness of ceramics and ceramic composites. Ceramics International 29 (2003), 777–784. https://doi.org/10.1016/S0272-8842(02)00230-4
- 22. Rashid A.B., Haque M., Islam S.M.M., Labib U., Rafi K.M., Chowdhury P.: Breaking Boundaries with Ceramic Matrix Composites: A Comprehensive Overview of Materials, Manufacturing Techniques, Transformative Applications, Recent Advancements, and Future Prospects. Advances in Materials Science and Engineering (2024), 2112358. https://doi.org/10.1155/2024/2112358
- 23. Kota N., Charan M.S., Laha T., Roy S.: Review on development of metal/ceramic interpenetrating phase composites and critical analysis of their properties. Ceramics International 48 (2022), 1451–1483. https://doi.org/10.1016/j.ceramint.2021.09.232
- 24. Faber K.T.: Ceramics: Microstructural Toughening (Excluding Transformation Toughening, Whisker Toughening, and Continuous Fiber Toughening). Encyclopedia of Materials: Science and Technology, K.H.J. Buschow et al., Elsevier, Amsterdam, 2001, 1108–1112.
- 25. Van Mier J.G.M.: Concrete: Failure Mechanics. Encyclopedia of Materials: Science and Technology, K.H.J. Buschow et al. , Elsevier, Amsterdam, 2001, 1479–1482.
- 26. Silva R.F., Coelho P.G., Gustavo C.V., Almeida C.J., Farias F.W.C., Duarte V.R., Xavier J., Esteves M.B., Conde F.M., Cunha F.G., et al.: Functionally graded materials and structures: Unified approach by optimal design, metal additive manufacturing, and image-based characterization. Materials 17 (2024), 4545. https://doi.org/10.3390/ma17184545.
- 27. Aboudi J., Pindera M.-J., Arnold S.M.: Higher-order theory for functionally graded materials. Composites Part B: Engineering 30 (1999), 777–832. https://doi.org/10.1016/S1359-8368(99)00053-0.
- 28. Li Y., Feng Z., Hao L., Huang L., Xin C., Wang Y., Bilotti E., Essa K., Zhang H., Li Z., Yan F., Peijs T.: A review on functionally graded materials and structures via additive manufacturing: From multi-scale design to versatile functional properties. Advanced Materials Technologies 5 (2020), 1900981. https://doi.org/10.1002/admt.201900981.
- 29. Saleh B., Jiang J., Fathi R., Al-hababi T., Xu Q., Wang L., Song D., Ma A.: 30 Years of functionally graded materials: An overview of manufacturing methods, applications and future challenges. Composites Part B: Engineering 201 (2020), 108376. https://doi.org/10.1016/j.compositesb.2020.108376.
- 30. Sharma N.K., Bhandari M.: Applications of functionally graded materials (FGMs). International Journal of Engineering Research & Technology (IJERT) 2 (2014), 2.
- 31. Silva R.F., Coelho P.G., Gustavo C.V., Almeida C.J., Farias F.W.C., Duarte V.R., Xavier J., Esteves M.B., Conde F.M., Cunha F.G., Santos T.G.: Functionally Graded Materials and Structures: Unified Approach by Optimal Design, Metal Additive Manufacturing, and Image-Based Characterization. Materials 17 (2024), 4545. https://doi.org/10.3390/ma17184545
- 32. Mohammadi M., Rajabi M., Ghadiri M.: Functionally graded materials (FGMs): A review of classifications, fabrication methods and their applications. Processing and Application of Ceramics 15 (2021), 319–343. 10.2298/PAC2104319M
- 33. Zygmuntowicz J., Wiecińska P., Miazga A., Konopka K., Kaszuwara W.: Al₂O₃/Ni functionally graded materials (FGM) obtained by centrifugal-slip casting method. Journal of Thermal Analysis and Calorimetry 130 (2017), 123–130. https://doi.org/10.1007/s10973-017-6232-5
- 34. Kausar A.: Progress in Polymer Nanocomposites for High-Performance Applications. Polymer-Plastics Technology and Materials 62 (2023), 453–472.
- 35. EN 623–2: Advanced technical ceramics – Determination of density and porosity, 1993.
- 36. Kurzydłowski K.J., Ralph B.: The Quantitative Description of the Microstructure of Materials. CRC Press, Boca Raton, 1995.
- 37. Wejrzanowski T., Spychalski W., Rożniatowski K., Kurzydłowski K.J.: Image based analysis of complex microstructures of engineering materials. International Journal of Applied Mathematics and Computer Science 18 (2008), 33–39. 10.2478/v10006-008-0003-1
- 38. Michalski J., Wejrzanowski T., Pielaszek R., Konopka K., Łojkowski W., Kurzydłowski K.J.: Application of image analysis for characterization of powders. Materials Science-Poland 23 (2005), 79–86.
- 39. Wejrzanowski T., Kurzydłowski K.J.: Stereology of grains in nano-crystals. Solid State Phenomena 94 (2003), 221–228. 10.4028/www.scientific.net/SSP.94.221
- 40. Pietrzak E., Wiecińska P., Szafran M.: 2-carboxyethyl acrylate as a new monomer preventing negative effect of oxygen inhibition in gelcasting of alumina. Ceramics International 42 (2016), 13682–13688. https://doi.org/10.1016/j.ceramint.2016.05.166
- 41. Zygmuntowicz, J., Kosiorek, M., Piotrkiewicz, P., Wachowski, M., Szachogłuchowicz, I., Kaszuwara, W., Konopka, K., Falkowski, P., & Piątek, M.: Gradient composites Al₂O₃–Ni obtained via the CSC technique in a magnetic field. Journal of Alloys and Compounds. Advance 1008 (2024), 176532. https://doi.org/10.1016/j.jallcom.2024.176532.
- 42. González C., Segurado J., Llorca J.: Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models, Journal of the Mechanics and Physics of Solids, 52, 7, (2004), 1573-1593, https://doi.org/10.1016/j.jmps.2004.01.002.
- 43. Wu, H., Xu, W., Shan, D., Wang, X., Guo, B., Jin, B.C.: Micromechanical modeling of damage evolution and fracture behavior in particle reinforced metal matrix composites based- on the conventional theory of mechanism-based strain gradient plasticity. J. Mater. Res. Technol. 22, (2023) 625–641.
- 44. Périé J.-N., Passieux J.-Ch.: Advances in Digital Image Correlation (DIC). Applied Sciences, 2020. 10.3390/books978-3-03928-515-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1f7f073-3e78-4162-ace9-ebb5338f23ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.