Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A better understanding of rockburst precursors and high stress distribution characteristics can allow for higher extraction efficiency with reduced safety concerns. Taking the rockburst that occurred on 30 January 2015 in the Sanhejian Coal Mine, Jiangsu Province, China, as an example, the mechanism of rockburst development in a roadway was analysed, and a combined method involving b values and seismic velocity tomography was used to assess the rockburst in both time and space, respectively. The results indicate that before the rockburst, b values dropped significantly from 0.829 to 0.373. Moreover, a good agreement between a significant decrease in b values and the increase of the number of strong tremors was found. Using seismic tomography, two rockburst risk areas were determined where the maximum velocity, maximum velocity anomaly and maximum velocity gradient anomaly were 6 km/s, 0.14 and 0.13, respectively. The high-velocity regions corresponded well with the rockburst zone and large seismic event distributions. The combination of b values and seismic tomography is proven to have been a promising tool for use in evaluating rockburst risk during underground coal mining.
Wydawca
Czasopismo
Rocznik
Tom
Strony
77--88
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou, China
autor
- Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou, China
autor
- Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou, China
autor
- Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou, China
autor
- Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou, China
autor
- Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou, China
autor
- Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou, China
Bibliografia
- 1. Aki K (1965) Maximum likelihood estimate of b in the formula log N = a − b M and its confidence limits. Bull Earth Res Inst Univ Tokyo 43:237–239
- 2. Amitrano D (2003) Brittle–ductile transition and associated seismicity: experimental and numerical studies and relationship with the b value. J Geophys Res 108(B1):2044. doi:10.1029/2001JB000680
- 3. Cai W, Dou LM, Cao AY, Gong SY, Li ZL (2014) Application of seismic velocity tomography in underground coal mines: a case study of Yima mining area, Henan, China. J Appl Geophys 109:140–149. doi:10.1016/j.jappgeo.2014.07.021
- 4. Cao AY, Dou LM, Cai W, Gong SY, Liu S, Jing GC (2015) Case study of seismic hazard assessment in underground coal mining using passive tomography. Int J Rock Mech Min Sci 78:1–9. doi:10.1016/j.ijrmms.2015.05.001
- 5. Dou LM, He H (2014) Spatial structure evolution of overlying strata and inducing mechanism of rockburst in coal mine. Trans Nonferrous Met Soc China 24(4):1255–1261. doi:10.1016/S1003-6326(14)63187-3
- 6. Dou LM, Chen TJ, Gong SY, He H, Zhang SB (2012) Rockburst hazard determination by using computed tomography technology in deep workface. Saf Sci 5(4):736–740. doi:10.1016/j.ssci.2011.08.043
- 7. Dou LM, Cai W, Gong SY, Han RJ, Liu J (2014) Dynamic risk assessment of rock burst based on the technology of seismic computed tomography detection. J China Coal Soc 39(2):238–244. doi:10.13225/j.cnki.jccs.2013.2016
- 8. Dou LM, He J, Cao AY, Gong SY, Cai W (2015) Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine. J. China Coal Soc 40(7):1469–1476. doi:10.13225/j.cnki.jccs.2014.1815
- 9. Ge M (2005) Efficient mine microseismic monitoring. Int J Coal Geol 64:44–56. doi:10.1016/j.coal.2005.03.004
- 10. Gilbert P (1972) Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 36(1):105–117. doi:10.1016/0022-5193(72)90180-4
- 11. Gong SY (2010) Research and application of using mine tremor velocity tomography to forecast rockburst danger in coal mine. China University of Mining and Technology, Xuzhou
- 12. Gong SY, Dou LM, He J, He H, Lu CP, Mu ZL (2012) Study of correlation between stress and longitudinal wave velocity for deep burst tendency coal and rock samples in uniaxial cyclic loading and unloading experiment. Rock Soil Mech 33(1):41–47. doi:10.3969/j.issn.1000-7598.2012.01.007
- 13. Gutenberg B, Richter C (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188
- 14. He MC, Qian QH (2010) The Basis of Deep Rock Mechanics. Science Press, Beijing (in Chinese)
- 15. He J, Dou LM, Cai W, Li ZL, Ding YL (2014) Mechanism of dynamic and static combined load inducing rockburst in thin coal seam. J China Coal Soc 39(11):2177–2182. doi:10.13225/j.cnki.jccs.2013.1603
- 16. Holub K (1996) Space-time variations of the frequency-energy relation for mining-induced seismicity in the Ostrava-Karvina mining district. Pure Appl Geophys 146(2):265–280. doi:10.1007/BF00876493
- 17. Hosseini N, Oraee K, Shahriar K, Goshtasbi K (2012) Passive seismic velocity tomography and geostatistical simulation on longwall mining panel. Arch Min Sci 57:139–155. doi:10.2478/v10267-012-0010-9
- 18. Lurka A (2008) Location of high seismic activity zones and seismic hazard assessment in Zabrze Bielszowice coal mine using passive tomography. J China Univ Min Technol 18(2):177–181. doi:10.1016/S1006-1266(08)60038-3
- 19. Luxbacher K, Westman E, Swanson P, Karfakis M (2008) Three-dimensional time-lapse velocity tomography of an underground longwall panel. Int J Rock Mech Min Sci 45(4):478–485. doi:10.1016/j.ijrmms.2007.07.015
- 20. Main IG, Meredith PG, Sammonds PR (1992) Temporal variations in seismic event rate and b values from stress corrosion constitutive laws. Tectonophysics 211(1–4):233–246. doi:10.1016/0040-1951(92)90061-A
- 21. Melnikov NN, Kozyrev AA, Panin VI (1996) Induced seismicity in large-scale mining in the Kola Peninsula and monitoring to reveal informative precursors. Pure Appl Geophys 147(2):263–276. doi:10.1007/BF00877482
- 22. Mutke G, Józef D, Lurka A (2015) New criteria to assess seismic and rock burst hazard in coal mines. Arch Min Sci 60(3):743–760. doi:10.1515/amsc-2015-0049
- 23. Nur A, Simmons G (1969) Stress-induced velocity anisotropy in rock: an experimental study. J Geophys Res 74(27):6667–6674. doi:10.1029/JB074i027p06667
- 24. Schorlemmer D, Weimer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437:539–542. doi:10.1038/nature04094
- 25. Urbancic TI, Trifu C-I, Long JM, Young RP (1992) Space-time correlation of b values with stress release. Pure Appl Geophys 139(3/4):449–462. doi:10.1007/BF00879946
- 26. Wang GF, Gong SY, Li ZL, Dou LM, Wu C, Mao Y (2015) Evolution of stress concentration and energy release before rock bursts: two case studies from Xingan coal mine, Hegang, China. Rock Mech Rock Eng 11:1–9. doi:10.1007/s00603-015-0892-x
- 27. Wiemer S, Wyss M (1997) Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times. J Geophys Res 102:15115–15128. doi:10.1029/97JB00726
- 28. Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bull Seismol Soc Am 90(4):859–869. doi:10.1785/0119990114
- 29. Wiemer S, McNutt SR, Wyss M (1998) Temporal and three-dimensional spatial analyses of the frequency-magnitude distribution near Long Valley Caldera, California. Geophys J Int 134(2):409–421. doi:10.1046/j.1365-246x.1998.00561.x
- 30. Wyss M, Klein F, Nagamine K, Weimer S (2001) Anomalously high b values in the South Flank of Kilauea Hawaii: evidence for the distribution of magma below Kilauea’s East Rift Zone. J Volcanol Geotherm Res 106(1–2):23–37. doi:10.1016/S0377-0273(00)00263-8
- 31. Yale D (1985) Recent advances in rock physics. Geophysics 50(12):2480–2491
- 32. Young RP, Maxwell SC, Urbancic TI, Feignier B (1992) Mining-induced microseismicity: monitoring and applications of imaging and source mechanism techniques. Pure appl Geophys 139(3):697–719. doi:10.1007/BF00879959
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1f0353c-8a00-47f9-93d1-d354ade80f59