PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrothermal synthesis and thermoelectric properties of PbS

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, hydrothermal approach combined with high pressure sintering method was employed to synthesize PbS. The X-ray diffraction results show that single phase PbS can be obtained by a simple hydrothermal method. The scanning electron microscope results show that the PbS sample has nearly cubic shape and preserves well crystallized and coarse grains after high pressure sintering. The thermoelectric performance of PbS obtained in this study is comparable to that of a PbS sample prepared by conventional method. The carrier type and concentration of PbS can be tuned effectively by doping with Bi. The maximum figure of merit for PbS doped with 1 mol% Bi reaches 0.44 at 550 K, which is about 30 % higher than that of undoped PbS. These results indicate that hydrothermal method provides a viable and controllable way of tuning the electrical transport and thermoelectric properties for PbS.
Wydawca
Rocznik
Strony
754--759
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
autor
  • Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
autor
  • School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, 454000, China
autor
  • Shanghai Entry-Exit Inspection & Quarantine Bureau, Shanghai, 200135, China
autor
  • Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
autor
  • Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
autor
  • Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
autor
  • Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
Bibliografia
  • [1] GIRARD S.N., SCHMIDT ROHR K., CHASAPIS T.C., Adv. Funct. Mater., 23 (2013), 747.
  • [2] SNYDER G.J., TOBERER E.S., Nat. Mater., 7 (2008), 105.
  • [3] HEREMANS J.P., JOVOVIC V., TOBERER E.S., Science, 321 (2008), 554.
  • [4] URBAN J.J., TALAPIN D.V., SHEVCHENKO E.V., Nat. Mater., 6 (2007), 115.
  • [5] DISALVO F.J., Science, 285 (1999), 703.
  • [6] LEE Y., LO S.H., CHEN C., Nat. Commun., 5 (2014), 4640.
  • [7] RAVICH I.I., Semiconducting Lead Chalcogenides, Springer US, New York, 2013.
  • [8] ZHAO L.D., HE J., HAO S., J. Am. Chem. Soc., 134 (2012), 16327.
  • [9] WU H., CARRETE J., ZHANG Z., NPG Asia. Mater., 6 (2014), e108.
  • [10] LIU W., LUKAS K C., MCENANEY K., Energ. Environ. Sci., 6 (2013), 552.
  • [11] WANG H., SCHECHTEL E., PEI Y., Adv. Energ. Mater., 3 (2013), 488.
  • [12] KIM H.S., GIBBS Z.M., TANG Y., SNYDER G.J., APL Mater., 3 (2015), 041506.
  • [13] ZHU T.J., CHEN X., CAO Y Q., J. Phys. Chem. C, 113 (2009), 8085.
  • [14] ZHAO X., JI X., ZHANG Y., Appl. Phys. Lett., 86 (2005), 062111.
  • [15] CAO Y., ZHAO X., ZHU T., Appl. Phys. Lett., 92 (2008), 3106.
  • [16] TANG X., XIE W, LI H., Appl. Phys. Lett., 90 (2007), 12102.
  • [17] ALBONI P., JI X., HE J., J. Appl. Phys., 103 (2008), 113707.
  • [18] JOHNSEN S., HE J., ANDROULAKIS J., J. Am. Chem. Soc., 133 (2011), 3460.
  • [19] KUANG D., XU A., FANG Y., Adv. Mater., 15 (2003), 1747.
  • [20] PEI Y.L., LIU Y., J. Alloy. Compd., 514 (2012), 40.
  • [21] MAHAN G., Solid State Phys., 51 (1997), 81.
  • [22] LI D., YANG K., HNG H., J. Appl. Phys., 104(2008), 103720.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1eff3de-2407-4fb1-a8d8-e9e76325040b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.