PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effectiveness of Diamond Blades in the Turning of Aluminium Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Owing to their excellent strength-to-weight ratio aluminium composite materials are very readily used in the construction of means of transport. The parts made of such materials must be characterized by high reliability and workmanship. Hence, machining is the predominant method of manufacturing parts from composites. The problem with the turning, milling and drilling of ceramic-reinforced composites is the abrasive action of the reinforcement, resulting in heavy wear of the blades and so in lower surface quality and dimensional-shape accuracy and higher manufacturing costs. A solution to this problem can involve the blades made of superhard materials or properly matched conditions of machining with sintered carbide blades. This paper presents the results of the turning tests carried out on an aluminium composite material reinforced with long ceramic fibres. An uncoated sintered carbide blade is compared with a diamond coated blade and a polycrystalline diamond blade. Post-turning surface roughness and machining forces were selected as the main indicators of cutting ability. The effect of the blades on the forming chips is shown and the higher resistance of the polycrystalline diamond blades to the abrasive action of the reinforcing fibres is confirmed by microscopic photographs. Besides the confirmation of the higher durability of the diamond blades, the conditions in which when using these blades one can achieve better machining effects than the ones achievable by the compared tools are defined. Moreover, it is shown that by properly matching the machining parameters and aiding machining with oil mist lubrication, it is possible to obtain excellent surface quality by means of carbide blades. The minimum quantity lubrication also increases the life of the blades.
Twórcy
  • Department of Machine Tools and Mechanical Engineering Technologies, Faculty of Mechanical Engineering, Wroclaw University of Technology and Science, Łukasiewicza 5, 50-371 Wrocław, Poland
  • Department of Machine Tools and Mechanical Engineering Technologies, Faculty of Mechanical Engineering, Wroclaw University of Technology and Science, Łukasiewicza 5, 50-371 Wrocław, Poland
  • Department of Machine Tools and Mechanical Engineering Technologies, Faculty of Mechanical Engineering, Wroclaw University of Technology and Science, Łukasiewicza 5, 50-371 Wrocław, Poland
Bibliografia
  • 1. Andrewes C.J.E, Feng H.Y, Lau W.M: Machining of an Aluminium/SiC Composite using Diamond Inserts. J Mater Process Technol 102, 2000, 25-29.
  • 2. Bansala P., Upadhyay L.: Effect of Turning Parameters on Tool Wear, Surface Roughness and Metal Removal Rate of Alumina Reinforced Aluminum Composite. Procedia Technology 23, 2016, 304-310.
  • 3. Bhardwaj A.R., Vaidya A.M., Shekhawat S.P.: Machining of Aluminium Metal Matrix Composite: A Review. Materials Today: Proceedings 21, 2020, 1396–1402.
  • 4. Bian R., He N., Li L., Zhang Z.B., Wu Q., Shi Z.Y.: Precision milling of high volume fraction SiCp/ Al composites with monocrystalline diamond end mill. International Journal of Advanced Manufacturing Technology 71(11), 2014, 411-419.
  • 5. Chambers A.R.: The machinability of light alloy MMCs Composites. Composites Part A: Applied Science and Manufacturing, 27(2), 1996, 143-147.
  • 6. Chambers A.R., Stephens S.E.: Machining of Al 5Mg reinforced with 5 vol.% Saffil and 15 vol.% SiC. Materials Science and Engineering, 135, 1991, 287-290.
  • 7. Hariprasad et al., Wear Characteristics of B4C and Al2O3 Reinforced with Al 5083 Metal Matrix based Hybrid Composite. Procedia Engineering 97, 2014, 925-929.
  • 8. Kishawy, H. A, Kannan S and Balazinski. M.: An energy-based Analytical Force Model for Orthogonal cutting of Metal Matrix Composites. CIRP Annals – Manufacturing Technology, (53)1, 2004, 91-94.
  • 9. Lane C.T.: Machining of Particulate- Reinforced Aluminium, Fabrication of Particles Reinforced Metal Composites, International Conference, Montreal, 1999, 195-201.
  • 10.Li X., Seah W.K.H.: Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites. Wear 247, 2001, 161-167.
  • 11. Morteza Alizadeh, Mostafa Alizadeh, Rasool Amini: Structural and Mechanical Properties of Al/B4C Composites Fabricated by Wet Attrition Milling and Hot Extrusion, Journal of Materials Science & Technology, Volume 29, Issue 8, August 2013, 725-730.
  • 12. Muthukrishnan N., Paulo Davim J.: Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. Journal of Materials Processing Technology, 209(1), 2009, 225-232.
  • 13. Naplocha K., Samsonowicz Z.: Twardość materiałów kompozytowych o zwiększonej zawartości włókien. Kompozyty (Composites) 12, 2001, 199-202.
  • 14. Naplocha K., Samsonowicz Z.: Mechanizm pękania materiałów kompozytowych na osnowie stopu AlSi9Mg umacnianych włóknami. Kompozyty (Composites) 24, 2002, 238-241.
  • 15. Nicholls C.J., Boswell B,, Davies I.J., Islam M.N., Review of machining metal matrix composites. Int. J. Adv. Manuf. Technol. 90, 2017, 2429–2441.
  • 16. PN-EN 1706:2001.
  • 17. Prakash Rao C.R, Bhagyashekar M.S, Narendraviswanath: Effect of Machining Parameters on the surface roughness while turning Particulate Composites. 12th Global congress on Manufacturing and Management, GCMM 2014. ScienceDirect Procedia Engineering 97, 2014, 421-431.
  • 18. Pugazhenthi A., Kanagaraj G.,, Dinaharan I., David Raja Selvam J.: Turning characteristics of in situ formed TiB2 ceramic particulate reinforced AA7075 aluminum matrix composites using polycrystalline diamond cutting tool. Measurement 121, 2018, 39–46.
  • 19. Puneet Bansal, Lokesh Upadhyay: Experimental Investigations To Study Tool Wear During Turning Of Alumina Reinforced Aluminium Composite. Procedia Engineering, 51, 2013, 818-837.
  • 20. Rajkumar K., Rajan P., Maria Antony Charles J.: Microwave Heat Treatment on Aluminium 6061 Alloy-Boron Carbide Composites. Procedia Engineering, 86, 2014, 34–41.
  • 21. Sekhar R., Singh T.P.: Mechanisms in turning of metal matrix composites: a review. J. Mater. Res. Technol. 4, 2015, 197–207.
  • 22. Siddesh Kumar N.G., Shiva Shankar G.S., Ganesh M.N., Vibudha L.K.;: Experimental Investigations to Study the Cutting Force and Surface Roughness during Turning of Aluminium Metal Matrix Hybrid Composites. Materials Today: Proceedings 4, 2017, 9371–9374.
  • 23. Sivasankarana S., Harisagarb P.T., Saminathanb E., Siddharthb S., Sasikumarb P.: Effect of Nose Radius and Graphite Addition on Turning of AA 7075-ZrB2 in-situ. Composites Procedia Engineering 97, 2014, 582-589.
  • 24. Ubeyl M., Acir A., Serdar Karakas M., Ogel B.: Effect of Feed Rate on Tool Wear in Milling of Al-4%Cu/B4Cp Composite. Journal Materials and Manufacturing Processes, 23(8), 2008, 945-950.
  • 25.Varadarajan Y. S, Vijayaraghavan L, Krishnamurthy R.: The machinability characteristics of aluminosilicate fibre reinforced Al alloy composite. Mater Manufacturing Process, 17, 2002, 811-824.
  • 26.Wang T., Xie L., Wang X., Ding Z.: PCD tool performance in high speed milling of high volume fraction Si/Cp/Al composites. International Journal of Advanved Manufacturing Technology, 78, 2015, 1445-1453.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1eae0ff-3571-4f98-a221-19c51cc9e793
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.