PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vs30-based site classifcation and assessment of site-specifc ground response analysis for densely populated urban areas of Trabzon (NE Turkey)

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The city of Trabzon has no site classification map or site-specific analyses representing the assessment earthquake hazard so far, although Trabzon had been influenced and damaged due to earthquakes that occurred particularly in the North Anatolian Fault zone both in the recent and distant past. This paper presents the site classification and analyzes the site-specific pseudo-spectral acceleration (PSA) for densely populated areas of Trabzon. The coastline and the east and west edges of the city demonstrate minimum Vs30 in the overall study area from 175 to 396 m/s, respectively, which falls CD to DE class in NEHRP, and ZC to ZE in TBDY. The Vs30 of the remaining areas vary between 347 and 851 m/s, representing CD to BC in NEHRP and ZD to ZB in Turkish Building Regulation. The wide range of Vs30 is mostly due to the depth of the volcanic main rock, altered and agglomerated settings of dominant formation. The estimated PSA curves along the coast side of Trabzon including the lowest Vs30 demonstrate significantly greater spectral acceleration values than the design spectrum, particularly in TA–TB range that was used for almost whole constructions in the study area. Also, PSAs of the neighborhoods mostly classified as ZC in TDBY indicate overlapping with design spectrums and peak values are pretty close to limits. As a result, the proposed paper demonstrates that the earthquake hazard should not be underestimated, in particular considering the high possibility of well-known frequent ruptures on the east side of the North Anatolian Fault.
Słowa kluczowe
PL
Vs30   NEHRP   TBDY   PSA   Trabzon  
Czasopismo
Rocznik
Strony
129--146
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
  • Geophysical Engineering, Karadeniz Technical University, Trabzon, Turkey
Bibliografia
  • 1. AFAD (2018a) Natural Disasters of Turkey between 2010–2017. https://www.afad.gov.tr/afet-analiz. Accessed 14 Jan 2021
  • 2. AFAD (2018b) Turkish Earthquake Building Regulations. The Ministry of Interior, Turkey
  • 3. Ahmetoglu S (2019) The constitutional revolution of 1908 and its aftermath in Trabzon. Leiden University
  • 4. Akgün A, Bulut F (2007) GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environ Geol 51:1377–1387. https://doi.org/10.1007/s00254-006-0435-6
  • 5. Aki K, Richards PG (1980) Quantitative seismology: theory and methods. Freeman, W. H
  • 6. Akin Ö, Sayil N (2016) Site characterization using surface wave methods in the Arsin-Trabzon province. NE Turkey Environ Earth Sci 75:72. https://doi.org/10.1007/s12665-015-4840-6
  • 7. Akkar S, Azak T, Çan T et al (2018a) Evolution of seismic hazard maps in Turkey. Bull Earthq Eng 16:3197–3228. https://doi.org/10.1007/s10518-018-0349-1
  • 8. Akkar S, Eroğlu Azak T, Çan T, et al (2014) Revision of Turkish seismic hazard map. AFAD, Ankara
  • 9. Akkar S, Kale Ö, Yakut A, Çeken U (2018b) Ground-motion characterization for the probabilistic seismic hazard assessment in Turkey. Bull Earthq Eng 16:3439–3463. https://doi.org/10.1007/s10518-017-0101-2
  • 10. Aktaş Y (2020) Erzincan’da Meydana Gelen Depremler (XI-XV. Yüzyıllar). Atatürk Üniversitesi Türkiyat Araştırmaları Enstitüsü Derg 399–419. doi: https://doi.org/10.14222/Turkiyat4308
  • 11. Alessio C, Crova R, Duò E, Naldi M (2015) MASW 2D Seismic Survey in Urban Areas - The Case of the Turin Metro 1 Line. European Association of Geoscientists & Engineers, pp 1–5
  • 12. Ali A, Kim KY (2016) Seismic site conditions in Gangneung, Korea, based on Rayleigh-wave dispersion curves and topographic data. Geosci J 20:781–791. https://doi.org/10.1007/s12303-016-0013-1
  • 13. Aung AMW, Leong EC (2015) Application of weighted average velocity (WAVe) method to determine Vs, 30. Soils Found 55:548–558. https://doi.org/10.1016/j.sandf.2015.04.007
  • 14. Babacan AE (2013) The Determination of Engineering Properties of Volcanic Rocks of Kabakoy Formation (Trabzon) with Seismic Tomography Method. MSc Thesis in Turkish, Karadeniz Technical University
  • 15. Babacan AE, Gelisli K, Ersoy H (2014) Seismic tomography and surface wave analysis based methodologies on evaluation of geotechnical properties of volcanic rocks: a case study. J Earth Sci 25:348–356. https://doi.org/10.1007/s12583-014-0417-7
  • 16. Babacan AE, Gelisli K, Tweeton D (2018) Refraction and amplitude attenuation tomography for bedrock characterization: Trabzon case (Turkey). Eng Geol 245:344–355. https://doi.org/10.1016/j.enggeo.2018.09.008
  • 17. Babayev G, Telesca L (2016) Site specific ground motion modeling and seismic response analysis for Microzonation of Baku, Azerbaijan. Acta Geophys 64:2151–2170. https://doi.org/10.1515/acgeo-2016-0105
  • 18. Bard P-Y, Campillo M, Chávez-Garcia FJ, Sánchez-Sesma F (1988) The Mexico Earthquake of September 19, 1985—A Theoretical Investigation of Large- and Small-scale Amplification Effects in the Mexico City Valley. Earthq Spectra 4:609–633. https://doi.org/10.1193/1.1585493
  • 19. Bekler T, Demirci A, Ekinci YL, Büyüksaraç A (2019) Analysis of local site conditions through geophysical parameters at a city under earthquake threat: Çanakkale, NW Turkey. J Appl Geophys 163:31–39. https://doi.org/10.1016/j.jappgeo.2019.02.009
  • 20. Bozer A (2020) Tasarım Spektral İvme Katsayılarının DBYBHY 2007 ve TBDY 2018 Yönetmeliklerine Göre Karşılaştırması. DÜMF Mühendis Derg 11:393–404. https://doi.org/10.24012/dumf.559965
  • 21. Brown LT, Diehl JG, Nigbor RL (2000) A simplified procedure to measure average shear-wave velocity to a depth of 30 Meters (Vs30). Auckland, New Zealand, p 0677
  • 22. BSSC (2020) NEHRP Recommended Seismic Provisions for New Buildings and Other Structures. Federal Emergency Management Agency of the U.S. Department of Homeland Security By the Building Seismic Safety Council of the National Institute of Building Sciences, Washington, D.C
  • 23. CEN (2004) Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings. European committee for standardization, Brussels
  • 24. Cercato M, Donno GD, Desideri FS, Giambattista LD (2021) Geophysical investigations for the identification of active seismic faults below alluvium for seismic hazard assessment. Surf Geophys 19:127–139. https://doi.org/10.1002/nsg.12147
  • 25. Chávez-García FJ, Pedotti G, Hatzfeld D, Bard P-Y (1990) An experimental study of site effects near Thessaloniki (northern Greece). Bull Seismol Soc Am 80:784–806. https://doi.org/10.1785/BSSA0800040784
  • 26. Comina C, Foti S, Boiero D, Socco L (2011) Reliability of Vs30 evaluation from surface-wave tests. J Geotech Geoenviron Eng 137:579–586. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000452
  • 27. Cultrera G, Cornou C, Di Giulio G, Bard P-Y (2021) Indicators for site characterization at seismic station: recommendation from a dedicated survey. Bull Earthq Eng 19:4171–4195. https://doi.org/10.1007/s10518-021-01136-7
  • 28. Eray Bi̇ber T (2019) Karadeniz’de Depremler ve Yardımlar (1939–1944). Marmara Türkiyat Araştırmaları Derg 6:151–181. https://doi.org/10.16985/mtad.660163
  • 29. Ergin M, Özalaybey S, Aktar M, Yalçin MN (2004) Site amplification at Avcılar, Istanbul. Tectonophysics 391:335–346. https://doi.org/10.1016/j.tecto.2004.07.021
  • 30. Ersoy H, Karsli MB, Çellek S et al (2013) Estimation of the soil strength parameters in Tertiary volcanic regolith (NE Turkey) using analytical hierarchy process. J Earth Syst Sci 122:1545–1555. https://doi.org/10.1007/s12040-013-0366-z
  • 31. Eyuboglu Y, Chung S-L, Santosh M et al (2011a) Transition from shoshonitic to adakitic magmatism in the eastern Pontides, NE Turkey: implications for slab window melting. Gondwana Res 19:413–429. https://doi.org/10.1016/j.gr.2010.07.006
  • 32. Eyuboglu Y, Santosh M, Bektas O, Ayhan S (2011b) Arc magmatism as a window to plate kinematics and subduction polarity: Example from the eastern Pontides belt, NE Turkey. Geosci Front 2:49–56. https://doi.org/10.1016/j.gsf.2010.12.004
  • 33. Fichtner A, Saygin E, Taymaz T et al (2013) The deep structure of the North Anatolian fault zone. Earth Planet Sci Lett 373:109–117. https://doi.org/10.1016/j.epsl.2013.04.027
  • 34. Foti S, Hollender F, Garofalo F et al (2017) Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bull Earthq Eng. https://doi.org/10.1007/s10518-017-0206-7
  • 35. Foti S, Lai CG, Rix GJ, Strobbia C (2014) Surface wave methods for near-surface site characterization, 1st edn. CRC Press, Boca Raton
  • 36. Grecu B, Zaharia B, Diaconescu M et al (2018) Characterization of site conditions for selected seismic stations in eastern part of Romania. Acta Geophys 66:153–165. https://doi.org/10.1007/s11600-018-0117-2
  • 37. Günaydin M, Atmaca B, Demir S et al (2021) Seismic damage assessment of masonry buildings in Elazığ and Malatya following the 2020 Elazığ-Sivrice earthquake, Turkey. Bull Earthq Eng 19:2421–2456. https://doi.org/10.1007/s10518-021-01073-5
  • 38. Hashash YMA, Musgrove MI, Harmon JA, et al (2020) DEEPSOIL 7.0, User Manual
  • 39. Inc G (2009) SeisImager. OYO Corporation, USA
  • 40. Işık E, Büyüksaraç A, Ekinci YL et al (2020) The effect of site-specific design spectrum on earthquake-building parameters: a case study from the marmara region (NW Turkey). Appl Sci 10:7247. https://doi.org/10.3390/app10207247
  • 41. Kalafat D, Toksöz MN (2015) Karadeniz’in yakın dönem depremselliğine ve sismotektoniğine genel bir bakış. Sakarya, p 71
  • 42. Kanlı AI, Tildy P, Prónay Z et al (2006) VS30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey. Geophys J Int 165:223–235. https://doi.org/10.1111/j.1365-246X.2006.02882.x
  • 43. Karsli H, Senkaya M (2019) Effects of Physical and Acquisition Parameters on Fundamental Dispersion Curve in MASW Method. European Association of Geoscientists & Engineers, pp 1–5
  • 44. Kim B, Nam MJ, Kim D et al (2016) An analysis of MASW responses for urban ground subsidence. ASEG Ext Abstr 2016:1–3. https://doi.org/10.1071/aseg2016ab213
  • 45. KOERI (2021) Bogaziçi University Kandilli Observatory and Earthquake Research Institute. http://www.koeri.boun.edu.tr/sismo/2/deprem-bilgileri/buyuk-depremler/. Accessed 27 Mar 2021
  • 46. Kul B (2012) Geotechnical Investigation on Yeşilyurt (Trabzon) Landslide and Slope Support Design Using by Back Analysis. MSc Thesis in Turkish, Karadeniz Technical University
  • 47. Leyendecker EV, Hunt RJ, Frankel AD, Rukstales KS (2000) Development of maximum considered earthquake ground motion maps. Earthq Spectra 16:20
  • 48. Liu W, Chen Q, Wang C et al (2017) Spatially correlated multiscale Vs30 mapping and a case study of the Suzhou site. Eng Geol 220:110–122. https://doi.org/10.1016/j.enggeo.2017.01.026
  • 49. Macau A, Benjumea B, Gabàs A et al (2018) Geophysical measurements for site effects characterisation in the urban area of Girona, Spain. Surf Geophys 16:340–355. https://doi.org/10.3997/1873-0604.2018004
  • 50. Menke W (2014) Review of the generalized least squares method. Surv Geophys 36:1–25. https://doi.org/10.1007/s10712-014-9303-1
  • 51. MEU (2007) Turkish Earthquake Building Regulations. Ministry of Environment and Urbanisation, Turkey
  • 52. Muthuganeisan P, Raghukanth STG (2016) Site-specific probabilistic seismic hazard map of Himachal Pradesh, India. Part I. Site-Specific Ground Motion Relations. Acta Geophys 64:336–361. https://doi.org/10.1515/acgeo-2016-0010
  • 53. Naeim F (2001) Earthquake excitation and response of buildings. In: Braun S (ed) Encyclopedia of Vibration. Elsevier, Oxford, pp 439–461
  • 54. Nazri FM, Ghuan TC, Hussin SN, Majid TA (2015) Evaluation of soil flexibility of the reclaimed area in Penang using the non-destructive method. Nat Hazards 78:1267–1291. https://doi.org/10.1007/s11069-015-1770-2
  • 55. Pamuk E, Özdağ ÖC, Özyalın Ş, Akgün M (2017) Soil characterization of Tınaztepe region (İzmir/Turkey) using surface wave methods and nakamura (HVSR) technique. Earthq Eng Eng Vib 16:447–458. https://doi.org/10.1007/s11803-017-0392-y
  • 56. Park C, Miller RD, Xia J (1998) Imaging dispersion curves of surface waves on multi-channel record. In: SEG Technical Program Expanded Abstracts 1998. Society of Exploration Geophysicists, pp 1377–1380
  • 57. Park CB, Miller RD, Xia J (1999) Multichannel analysis of surface waves. Geophysics 64:800–808. https://doi.org/10.1190/1.1444590
  • 58. Pudi R, Roy P, Martha TR, Kumar KV (2021) Estimation of earthquake local site effects using microtremor observations for the Garhwal-Kumaun Himalaya, India. Surf Geophys 19:73–93. https://doi.org/10.1002/nsg.12128
  • 59. Putti SP, Devarakonda NS, Towhata I (2019) Estimation of ground response and local site effects for Vishakhapatnam, India. Nat Hazards 97:555–578. https://doi.org/10.1007/s11069-019-03658-5
  • 60. Putti SP, Satyam N (2017) Ground response analysis and liquefaction hazard assessment for Vishakhapatnam city. Innov Infrastruct Solut 3:12. https://doi.org/10.1007/s41062-017-0113-4
  • 61. Rastogi BK, Singh AP, Sairam B et al (2011) The possibility of site effects: the anjar case, following past earthquakes in Gujarat, India. Seismol Res Lett 82:59–68. https://doi.org/10.1785/gssrl.82.1.59
  • 62. Sairam B, Singh AP, Patel V et al (2018) Influence of local site effects in the Ahmedabad Mega City on the damage due to past earthquakes in Northwestern India. Bull Seismol Soc Am 108:2170–2182. https://doi.org/10.1785/0120170266
  • 63. Sairam B, Singh AP, Patel V et al (2019) VS30 mapping and site characterization in the seismically active intraplate region of Western India: implications for risk mitigation. Surf Geophys 17:533–546. https://doi.org/10.1002/nsg.12066
  • 64. Senkaya M, Karsli H, Socco LV, Foti S (2020) Obtaining reliable S-wave velocity depth profile by joint inversion of geophysical data: the combination of active surface-wave, seismic refraction and electric sounding data. Near Surf Geophys. https://doi.org/10.1002/nsg.12126
  • 65. Senkaya M, Karslı H (2016) Joint inversion of Rayleigh-wave dispersion data and vertical electric sounding data: synthetic tests on characteristic sub-surface models. Geophys Prospect 64:228–246. https://doi.org/10.1111/1365-2478.12289
  • 66. Şeşetyan K, Sakin O, Sönmez S, Tümsa MBD (2020) Seismic history of central north anatolian region: new contribution from ottoman archives. Seismol Res Lett 91:2590–2600. https://doi.org/10.1785/0220200095
  • 67. Silahtar A, Kanbur MZ (2021) 1D nonlinear site response analysis of the Isparta Basin (Southwestern Turkey) with surface wave (ReMi) and borehole data. Environ Earth Sci 80:268. https://doi.org/10.1007/s12665-021-09551-4
  • 68. Socco L, Strobbia CL (2004) Surface-wave method for near-surface characterization: a tutorial. Surf Geophys. https://doi.org/10.3997/1873-0604.2004015
  • 69. Socco LV, Mabyalaht G, Comina C (2015) Robust static estimation from surface wave data. In: SEG Technical Program Expanded Abstracts 2015. Society of Exploration Geophysicists, pp 5222–5227
  • 70. Stanko D, Markušić S, Strelec S, Gazdek M (2017) Equivalent-linear site response analysis on the site of the historical Trakošćan Castle, Croatia, using HVSR method. Environ Earth Sci 76:642. https://doi.org/10.1007/s12665-017-6971-4
  • 71. TADAS (2021) 247730–4302-AFAD - TADAS. https://tadas.afad.gov.tr/waveform-detail/3151. Accessed 20 Sep 2021
  • 72. Tezcan SS, Ipek M (1972) Long distance effects of the 28 March 1970 gediz turkey earthquake. Earthq Eng Struct Dyn 1:203–215. https://doi.org/10.1002/eqe.4290010302
  • 73. Tezcan SS, Kaya E, Engin Bal İ, Özdemir Z (2002) Seismic amplification at Avcılar, Istanbul. Eng Struct 24:661–667. https://doi.org/10.1016/S0141-0296(02)00002-0
  • 74. Tran N-L, Aaqib M, Nguyen B-P et al (2021) Evaluation of seismic site amplification using 1D site response analyses at Ba Dinh square area. Vietnam Adv Civ Eng 2021:e3919281. https://doi.org/10.1155/2021/3919281
  • 75. USGS (2000) Implications for earthquake risk reduction in the United States from the Kocaeli, Turkey, earthquake of August 17, 1999. U.S. Geological Survey, Reston, VA
  • 76. Vanlı Senkaya G, Senkaya M, Karsli H, Güney R (2020) Integrated shallow seismic imaging of a settlement located in a historical landslide area. Bull Eng Geol Environ 79:1781–1796. https://doi.org/10.1007/s10064-019-01612-0
  • 77. Xia J, Shen C, Xu Y (2013) Near-surface shear-wave velocities and quality factors derived from high-frequency surface waves. Lead Edge 32:612–618. https://doi.org/10.1190/tle32060612.1
  • 78. Zülfi̇kar AC, (2020) 24 Ocak 2020 Elazığ Depreminin Kuvvetli Yer Hareketi Verilerinin Değerlendirilmesi. Çukurova Üniversitesi Mühendis-Mimar Fakültesi Derg 35:821–834. https://doi.org/10.21605/cukurovaummfd.846809
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1ea072b-16b0-4b75-bbe8-2c6b87c8769e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.