PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of La3+ and Dy3+ ions on biohydroxyapatite obtained from pork bones gasified with steam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adsorption of La3+ and Dy3+ from their aqueous nitrate solutions on biohydroxyapatite (BHAP) originally prepared from raw pork bones by steam gasification of has been investigated for the La3+and Dy3+ concentrations within the range of 1.44·10–4–8.06·10–3 mol/dm3 and 2.71·10–5 5.68·10–3 mol/dm3, respectively. It was found that saturation of the lanthanide uptake occurred at 0.0625 moles of Ln3+ per mole of BHAP. Two model isotherms, i.e., Langmuir (qe = qmCe/((1/KL) + Ce)) and Freundlich (logqe = logKF + (1/n)logCe), were used to fit the adsorption data. The following isotherm parameters were found for La3+: qm = 0.1265 mol/kg, KL = 2701 dm3/mol, n = 5.61, KF = 0.283 (mol/kg)·(dm3/mol)1/n and for Dy3+: qm = 0.1223 mol/kg, KL = 3635 dm3/mol, n = 5.82, KF = 0.306(mol/kg)·(dm3/mol)1/n. A better correlation was found for the Freundlich model. A relatively high value of the n parameter in the Freundlich equation suggests heterogeneous chemisorption of lanthanide ions.
Rocznik
Strony
29--40
Opis fizyczny
Bibliogr. 18 poz., tab., rys.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] COUTAND M., CYR M., DEYDIER E., GUILET R., CLASTRES P., Characteristics of industrial and laboratory meat and bone meal ashes and their potential applications, J. Hazard. Mater., 2008, 150, 522.
  • [2] KRUPA-ŻUCZEK K., SZYNKOWSKA M.I., WZOREK Z., SOBCZAK-KUPIEC A., Physicochemical properties of meat-bone meal and ashes after its thermal treatment, Archit. Civil Eng. Environ., 2012, 4, 95.
  • [3] FERREIRO O., YUBERO F., BALESTRA R., VARELLA M., MONTEIRO M., Bovine bone processing for biofilter application, Mater. Sci. Forum, 2012, 727–728, 727.
  • [4] ALOTAIBI D.K., SCHOENAU J.J., FONSTAD T., Possible utilization of ash from meat and bone meal and dried distillers grains gasification as a phosphorus fertilizer: crop growth response and changes in soil chemical properties, J. Soil. Sediment., 2013, 13, 1024.
  • [5] SHARROCK P., BRUMAS V., FIALLO M.M.L., Wastewater sorption on HA: old recipes for new tastes, Procedia Earth Planet. Sci., 2013, 7, 256.
  • [6] ZWETSLOOT M.J., LEHMANN J., SOLOMON D., Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry?, J. Sci. Food Agric., 2015, 95, 281.
  • [7] GOUVÊA D., KANEKO T.T., KAHN H., DE SOUZA CONCEIÇÃO E., ANTONIASSI J.L., Using bone ash as an additive in porcelain sintering, Ceram. Int., 2015, 41, 487.
  • [8] MENDOZA-CASTILLO D.I., BONILLA-PETRICIOLET A., JÁUREGUI-RINCÓN J., On the importance of surface chemistry and composition of Bone char for the sorption of heavy metals from aqueous solution, Des. Water Treat., 2015, 54, 1651.
  • [9] VIDAUD C., BOURGEOIS D., MEYER D., Bone as target organ for metals. The case of f-elements, Chem. Res. Toxicol., 2012, 25, 1161.
  • [10] HOLLIDAY K., HANDLEY-SIDHU S., DARDENNE K., RENSHAW J., MACASKIE L., WALTHER C., STUMPF T., A new incorporation mechanism for trivalent actinides into bioapatite. A TRLFS and EXAFS study, Langmuir, 2012, 28, 3845.
  • [11] GRANADOS-CORREA F., VILCHIS-GRANADOS J., JIMÉNEZ-REYES M., QUIROZ-GRANADOS L.A., Adsorption behaviour of La(III) and Eu(III) ions from aqueous solutions by hydroxyapatite. Kinetic, isotherm, and thermodynamic studies, J. Chem., 2013, ID 751696, http://dx.doi.org/10.1155/2013/751696
  • [12] CAWTHRAY J.F., CREAGH A.L., HAYNES C.A., ORVIG C., Ion exchange in hydroxyapatite with lanthanides, Inorg. Chem., 2015, 54, 1440.
  • [13] GOK C., Neodymium and samarium recovery by magnetic nano-hydroxyapatite, J. Radioanal. Nucl. Chem., 2014, 301, 641.
  • [14] BERZINA-CIMDINA L., BORODAJENKO N., Research of calcium phosphates using fourier transform infrared spectroscopy, [In:] T. Theophile (Ed.), Infrared Spectroscopy. Materials Science, Engineering and Technology, In Tech, Croatia, 2012, p. 123.
  • [15] Rivera-Munoz E.M., Hydroxyapatite-Based Materials: Synthesis and Characterization, [In:] P. Fazel (Ed.), Biomedical Engineering – Frontiers and Challenges, In Tech, Croatia, 2011, p. 75.
  • [16] FOO K.Y., HAMEED B.H., Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 2010, 156, 2.
  • [17] LIATSOU I., EFSTATHIOU M., PASHALIDIS I., Adsorption of trivalent lanthanides by marine sediments, J. Radioanal. Nucl. Chem., 2015, 304, 41.
  • [18] LIU S., Cooperative adsorption on solid surfaces, J. Colloid Interf. Sci., 2015, 450, 224
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1e51898-3428-479f-95b0-9b65e331cff8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.