Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the years 2008-2011, the study on the surface and subsurface water runoff from the forested loess slope was carried out to determine the concentrations of selected chemical indicators of water quality, soil suspension and loss of the pure matter component. The maximum tested concentrations of water quality indicators were low and amounted to: 1.841 mg‧dm-3 N-Nog, 0.943 mg‧dm-3 N-NH4, 0.478 mg‧dm-3 N-NO3, 0.213 mg‧dm-3 N-NO2, 0.423 mg‧dm-3 P, 1.621 mg‧dm-3 K. The masses of the eroded matter constituents were low and amounted to: 0.808 kg‧ha-1 N, 0.157 kg‧ha-1 P, 0.142 kg‧ha-1 K and 2.989 kg‧ha-1 soil. The parameters of erosive precipitation and water outflow were statistically significantly correlated with the concentration of soil suspended matter and losses of the analyzed components of matter, as well as negligible concentration of chemical indicators of water quality. Afforestation of the loess slopes threatened by erosion is a treatment that effectively protects the soil against water erosion.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
259--266
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- University of Life Sciences in Lublin, Department of Environmental Engineering and Geodesy, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
Bibliografia
- 1. Arriaga F.J., Lowery B. 2003. Corn production on an eroded soil: effects of total rainfall and soil water storage. Soil and Till. Res., 71, 87–93.
- 2. Asiedu J.K. 2018. Assessing the Threat of Erosion to Nature-Based Interventions for Stormwater Management and Flood Control in the Greater Accra Metropolitan Area, Ghana. Journal of Ecological Engineering, 19(1), 1–13.
- 3. Catt J.A. 2001. The agricultural importance of loess. Earth-Sci. Reviews, 54, 213–229.
- 4. Duan X., Xie Y., Ou T., Lu H. 2011. Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China. Catena, 87, 268–275.
- 5. Dupas R., Delmas M., Dorioz J.M., Garnier J., Moatar F., Gascuel-Odoux C. 2015. Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecol. Indic., 48, 396–407.
- 6. Gabryszewska M., Kucharczak K., Maciaszek D., Gworek B., Kijeńska M., Tokarz L. 2016. The computational models for determining predicted substance concentrations in surface waters. Przem. Chem., 95/3, 609–612 (in Polish).
- 7. Grzywna A., Tarkowska-Kukuryk M., Bochniak A., Marczuk A., Jóźwiakowski K., Marzec M., Mazur A., Obroślak R., Nieścioruk K., Zarajczyk J. 2015. Application of chemical and biological indicators for assessment of an ecological potential of artificial watercourses. Przem. Chem., 94/11, 1954–1957 (in Polish).
- 8. Hladký J., Novotná J., Elbl J., Kynický J., Juřička D., Novotná J., Brtnický M., 2016. Impacts of Water Erosion on Soil Physical Properties Acta Univ. Agric. Silvic. Mendelianae Brun., 64, 1523–1527.
- 9. Ijaz A., Khan F., Bhatti A.U. 2006. Some physicochemical properties of soil as influenced by surface erosion under different cropping systems on upland-sloping soil. Soil and Environ., 25(1), 28–34.
- 10. Józefaciuk A., Józefaciuk Cz. 1999. Mechanism and methodical guidelines for the study of erosion processes. PIOŚ, Bibl. Monit. Środ. (in Polish).
- 11. Kondracki J. 2000. Regional geography of Poland. Wyd. Nauk. PWN (in Polish).
- 12. Kim K., Kim B., Eum J., Seo B., Christopher L., Shope C.L., Peiffer S. 2018. Impacts of land use change and summer monsoon on nutrients and sediment exports from an agricultural catchment. Water, 10, 544, doi:10.3390/w10050544.
- 13. Lal R. 2005. Soil erosion and carbon dynamics. Soil Till. Res., 81,137–142.
- 14. Lobo D., Lozano Z., Delgado F. 2005. Water erosion risk assessment and impact on productivity of a Venezuelan soil. Catena, 64, 297–306.
- 15. Mazur A. 2018. Quantity and Quality of Surface and Subsurface Runoff from an Eroded Loess Slope Used for Agricultural Purposes. Water, 10, 1132, doi:10.3390/w10091132.
- 16. Mucha J. 1994. Geostatistical methods in documenting deposits. Skrypt Katedry Geologii Kopalnianej AGH (in Polish).
- 17. Olson K.R. 2007. Soil organic carbon storage in southern Illinois woodland and cropland. Soil Sci., 172, 623–630.
- 18. Papiernik S.K., Lindstrom M.J., Schumacher J.A., Farenhorst A., Stephens K.D., Schumacher T.E., Lobb D.A. 2005. Variation in soil properties and crop yield across an eroded prairie landscape. J. Soil Water Conserv., 60, 388–395.
- 19. Regulation of the Minister of Environment of November 9, 2011 on the method of classification of uniform state surface water bodies and environmental quality standards for priority substances. Dz. U. 2011. nr 257 poz. 1545 (in Polish).
- 20. Rejman J. 2006. Effect of water and tillage erosion on transformation of soils and loess slopes. Acta Agroph., 136 (in Polish).
- 21. Robichaud P. R., Wagenbrenner J. W., Brown R. E. 2010. Rill erosion in natural and disturbed forests: 1. Measurements. Water Resources Research, 46, W10506.
- 22. Stanisz A. 1998. An affordable statistics course. Vol. 1. StatSoft Polska Sp. z o.o. Kraków (in Polish).
- 23. Święchowicz J. 2012. Rainfall thresholds for erosion processes in agricultural catchments. Wyd. IGiGP UJ, Kraków (in Polish).
- 24. Tyszka J. 2008. Hydrological functions of forests in small lowland catchments. Prace IBL Rozprawy i Monografie, 10 (in Polish).
- 25. Żmuda R. 2006. Fluvial transport system functioning in small catchment threatened by soil water erosion. Zesz. Nauk. AR we Wrocławiu, 544 (in Polish).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1e18765-0a7e-4832-a5be-0ffb527d40d8