PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Sea-level change and projected future flooding along the Egyptian Mediterranean coast

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Future sea-level changes along the Mediterranean Egyptian coast (southern Levantine sub-basin) are projected using satellite altimetry data and model simulations. Twenty-one years (1993–2013) of satellite altimetry data, represented by dynamic topography (DT), are examined in light of tide-gauge observations. Current DT changes are examined with respect to five atmospheric/oceanic factors. The qualities of three realizations of the Geophysical Fluid Dynamics Laboratory (GFDL) model are examined by comparing these with DT. Finally, the simulations best describing the present DT are used to describe projected sea-level changes in the study area. The results indicate that DT can be used to study coastal and deep-water sea-level changes in the study area. The southern Levantine sub-basin sea level has recently risen by an average of 3.1 cm decade-1 and exhibits significant annual sea-level variation of −17 cm to 8 cm. The sea-level variation is significantly affected by several factors: sea-level variation west of the Gibraltar Strait, steric sea level, and sea-surface temperature. The GFDL simulations best describing the recent sea level over the study area, i.e., GFDL-CM3 and GFDL-ESM2M, are used to calculate the two-model ensemble mean (GFDL-2ENM), which indicates that Egypt's Mediterranean coast will experience substantial sea-level rise (SLR) this century. The estimated uncertainty over the study area was 4–22 cm by 2100, with the emission assumptions dominating the three sources of uncertainty sources. Comparing the projected SLRs with digital elevation data indicates that Egypt's Mediterranean coast will only be safe from flooding by 2100 if effective adaptation methods are applied.
Czasopismo
Rocznik
Strony
293--307
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr., fot., mapy
Twórcy
autor
  • Department of Oceanography, University of Alexandria, Alexandria, Egypt
  • Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
autor
  • Meteorology Program, College of Maritime Transport and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
autor
  • Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
Bibliografia
  • Abu Hatab, A., Xuexi, H., Shoumann, N., 2012. Exploring Egypt— China bilateral trade: dynamics and perspectives. J. Econ. Stud. 39, 314—326.
  • Amitai, I., Lehahn, Y., Lazar, A., Heifetz, E., 2010. Surface circulation of the eastern Mediterranean Levantine basin: insights from analyzing 14 years of satellite altimetry data. J. Geophys. Res. 115, C10058.
  • BACC II Author Team, 2015. Second Assessment of Climate Change for the Baltic Sea Basin. Springer International, Cham, Switzerland, 501 pp.
  • Cazenave, A., Cabanes, A., Dominh, A., Mangiarotti, S., 2001. Recent sea level changes in the Mediterranean Sea revealed by Topex/ Poseidon satellite altimetry. Geophys. Res. Lett. 28, 1607—1610, http://dx.doi.org/10.1029/2000GL012628.
  • Chambers, D.P., Bonin, J.A., 2012. Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean. Ocean Sci. 8, 859—868.
  • Criado-Aldeanueva, F., Del Río, J., Vera, J., 2008. Steric and mass-induced Mediterranean sea level trends from 14 years of altimetry data. Glob. Planet. Change 60, 563—575, http://dx.doi.org/ 10.1016/j.gloplacha.2007.07.003.
  • Dasgupta, S., Laplante, B., Murray, S., Wheeler, D., 2009. Sea-Level Rise and Storm Surges. Policy Research Working Paper 4901. The World Bank, Development Research Group, Environment and Energy Team, Washington, DC.
  • Ducet, N., Le Traon, Y.P., Reverdin, G., 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. 105, 19477—19498.
  • Dunne, P.J., John, G.J., Adcroft, J.A., Griffies, M.S., Hallberg, W.R., Shevliakova, E., Stouffer, J.R., Cooke, W., Dunne, A.K., Harrison, J.M., Krasting, P.J., Malyshev, L.S., Milly, P.C.D., Phillipps, J.P., Sentman, T.L., Samuels, L.B., Spelman, J.M., Winton, M., Wittenberg, T.A., Zadeh, N., 2012. GFDL's ESM2 global coupled climate—carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 25, 6646—6665, http://dx.doi.org/10.1175/JCLI-D-11-00560.1.
  • Dunne, P.J., John, J.G., Shevliakova, E., Stouffer, J.R., Krasting, P.J., Malyshev, L.S., Milly, P.C.D., Sentman, T.L., Adcroft, J.A., Cooke, W., Dunne, A.K., Griffies, M.S., Hallberg, W.R., Harrison, J.M., Levy, H., Wittenberg, T.A., Phillipps, J.P., Zadeh, N., 2013. GFDL's ESM2 global coupled climate—carbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247—2267, http://dx.doi.org/ 10.1175/JCLI-D-12-00150.1.
  • Egyptian Environmental Affairs Agency (EEAA), 1999. The Arab Republic of Egypt: Initial National Communication on Climate Change. Prepared for the United Nations Framework Convention on Climate Change. Cairo.
  • El-Fishawi, N.M., Fanos, A.M., 1989. Prediction of sea level rise by 2100, Nile Delta coast. Int. Union Quat. Res. Quat. Shoreline Newslett. 11, 43—47.
  • El-Nahry, A.H., Doluschitz, R., 2010. Climate change and its impacts on the coastal zone of the Nile Delta. Environ. Earth Sci. 59, 1497—1506.
  • El-Raey, M., 1997. Vulnerability assessment of the coastal zone of the Nile delta of Egypt to the impacts of sea-level rise. Ocean Coast. Manage. 37, 29—40.
  • El-Raey, M., 2010. Impacts and implications of climate change for the coastal zones of Egypt. In: Michel, D., Pandya, A. (Eds.), Coastal Zones and Climate Change. Henry L. Stimson Center, Washington, DC, 31—50.
  • Frihy, O., 1992. Sea-level rise and shoreline retreat of the Nile Delta promontories, Egypt. Nat. Hazards 5, 65—81.
  • Frihy, O., 2003. The Nile Delta—Alexandria Coast: vulnerability to sea-level rise, consequences and adaptation. Mitig. Adapt. Strateg. Glob. Change 8, 115—138.
  • Gaspar, P., Ponte, R., 1997. Relation between sea level and barometric pressure determined from altimeter data and model simulations. J. Geophys. Res. 102, 961—971.
  • Goddio, F., Bernand, A., Bernand, E., Darwish, I., Kiss, Z., Yoyotte, J., 1998. Alexandria: The Submerged Royal Quarters. Periplus, London, 274 pp.
  • Gomis, D., Ruiz, S., Garcıa-Sotillo, M., lvarez Fanjul, E.A., Terradas, J., 2008. Low frequency sea level variability in the Mediterranean Sea. Part I: The contribution of atmospheric pressure and wind. Glob. Planet. Change 63, 215—229.
  • Griffies, S.M., Winton, M., Donner, L.J., Horowitz, W.L., Downes, S. M., Farneti, R., Gnanadesikan, A., Hurlin, J.W., Lee, H., Liang, Z., Palter, B.J., Samuels, L.B., Wittenberg, A.T., Wyman, B., Yin, J., Zadeh, N., 2011. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J. Clim. 24, 3520—3544, http://dx.doi.org/10.1175/2011JCLI3964.1.
  • Guidoboni, E., 1994. Catalogue of Ancient Earthquakes in the Mediterranean Area up to the 10th Century. Istituto Nazionale di Geofisica, Bologna, 504 pp.
  • Hanson, S., Nicholls, R.J., Ranger, N., Hallegatte, S., Corfee-Morlot, J., Herweijer, C., Chateau, J., 2011. A global ranking of port cities with high exposure to climate extremes. Clim. Change 104, 89— 111, http://dx.doi.org/10.1007/s10584-010-9977-4.
  • Hassaan, M.A., Abdrabo, M.A., 2013. Vulnerability of the Nile Delta coastal areas to inundation by sea level rise. Environ. Monit. Assess. 185, 6607—6616.
  • IPCC, 2013. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535 pp.
  • Kebeasy, R.M., 1990. Seismicity. In: Said, R. (Ed.), The Geology of Egypt. A.A. Balkema, Rotterdam, 51—59.
  • Kopp, R.E., Horton, R.M., Little, C.M., Mitrovica, J.X., Oppenheimer, M., Rasmussen, D.J., Strauss, B.H., Tebaldi, C., 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth's Future 2, 383—406, http:// dx.doi.org/10.1002/2014EF000239.
  • Landerer, F.W., Volkov, D.L., 2013. The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophys. Res. Lett. 40, 553—557, http://dx.doi.org/10.1002/grl.50140.
  • McKenzie, J., 2007. The Architecture of Alexandria and Egypt, C. 300 B.C. to A.D. 700, vol. 63. Yale University Press, New Haven, CT, 458 pp.
  • Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A. T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J., Zhao, Z.C., 2007. Global climate projections. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.
  • Menemenlis, D., Fukumori, I., Lee, T., 2007. Atlantic to Mediterranean Sea level difference driven by winds near Gibraltar Strait. J. Phys. Oceanogr. 37, 359—376.
  • Menna, M., Poulain, P.-M., Zodiatis, G., Gertman, I., 2012. On the surface circulation of the Levantine sub-basin derived from Lagrangian drifters and satellite altimetry data. Deep-Sea Res. Part I 65, 46—58.
  • Milne, G.A., Gehrels, W.R., Hughes, C.W., Tamisiea, M.E., 2009. Identifying the causes of sea-level change. Nat. Geosci. 2, 471—478, http://dx.doi.org/10.1038/ngeo544.
  • Morcos, S., Tongring, N., Halim, Y., El-Abbadi, M., Awad, H., 2003. Towards Integrated Management of Alexandria's Coastal Heritage. Coastal Region and Small Island Papers 14. UNESCO, Paris, 79 pp.
  • Oddo, P., Adani, M., Pinardi, N., Fratianni, C., Tonani, M., Pettenuzzo, D., 2009. A nested Atlantic—Mediterranean Sea general circulation model for operational forecasting. Ocean Sci. 5, 461— 473.
  • Palmer, A., 2008. Rising sea levels. The World Bank Report. Available at: http://www.theworldincrisis.com/artman2/publish/ climate/Rising_Sea_Levels.shtml.
  • Poulain, P., Menna, M., Mauri, E., 2012. Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J. Phys. Oceanogr. 42, 973—990.
  • Quinn, J., Ponte, M., 2010. Uncertainty in ocean mass trends from GRACE. Geophys. J. Int. 181, 762—768, http://dx.doi.org/ 10.1111/j.1365-246X.2010.04508.x.
  • Rio, M.-H., Pascual, A., Poulain, P.-M., Menna, M., Barceló, B., Tintoré, J., 2014. Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data. Ocean Sci. 10, 731—744.
  • Roaf, S., Crichton, D., Nicol, F., 2005. Adapting Buildings and Cities for Climate Change: A 21st Century Survival Guide. Elsevier, London, 400 pp.
  • Said, M.A., Moursy, Z.A., Radwan, A.A., 2012. Climate change and sea level oscillations off Alexandria, Egypt. In: Proceedings of the International Conference on Marine and Coastal Ecosystem, MarCoastEcs2012, Tirana, Albania, 25—28 April 2012, 353—359.
  • Shaltout, M., Omstedt, A., 2014. Recent dynamic topography changes in the Mediterranean Sea analyzed from altimetry data. CDO 7, 1—26.
  • Stammer, D., Cazenave, A., Ponte, R.M., Tamisiea, M.E., 2013. Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci. 5, 21—46, http://dx.doi.org/10.1146/annurev-marine-121211-172406.
  • Suzuki, T., Ishii, M., 2011. Regional distribution of sea level changes resulting from enhanced greenhouse warming in the Model for Interdisciplinary Research on Climate version 3.2. Geophys. Res. Lett. 38, L02601, http://dx.doi.org/10.1029/2010GL045693.
  • Taylor, K., Stouffer, R., Meehl, G., 2012. An overview of CMIP5 and the experiment design. BAMS 93, 485—498, http://dx.doi.org/ 10.1175/BAMS-D-11-00094.1.
  • Thiersch, H., 1909. Der Pharos, Antike Islam und Occident. Ein Beitrag zu Architekturgeschichte. B. G. Teubner, Leipzig and Berlin, 220 pp.
  • Tsimplis, M.N., Calafat, M.F., Marcos, M., Jordà, G., Gomis, D., Fenoglio-Marc, L., Struglia, V.M., Josey, A.S., Chambers, P.D., 2013. The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J. Geophys. Res. 118, 1—9, http://dx.doi. org/10.1002/jgrc.20078.
  • Tsimplis, M.N., Marcos, M., Somot, S., 2008. 21st century Mediterranean sea level rise: steric and atmospheric pressure contributions from a regional model. Glob. Planet. Change 63, 105—111.
  • Tsimplis, M.N., Rixen, N., 2002. Sea level in the Mediterranean Sea: the contribution of temperature and salinity changes. Geophys. Res. Lett. 29 51-1—51-4.
  • Volkov, D.L., Larnicol, G., Dorandeu, J., 2007. Improving the quality of satellite altimetry data over continental shelves. J. Geophys. Res. 112, C06020, http://dx.doi.org/10.1029/2006JC003765.
  • Wöppelmann, G., Le Cozannet, G., de Michele, M., Raucoules, D., Cazenave, A., Garcin, M., Hanson, S., Marcos, M., Santamaría- Gómez, A., 2013. Is land subsidence increasing the exposure to sea level rise in Alexandria, Egypt? Geophys. Res. Lett. 40, 2953— 2957, http://dx.doi.org/10.1002/grl.50568.
  • Wöppelmann, G., Marcos, M., 2012. Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. J. Geophys. Res. 117, C01007, http://dx.doi.org/10.1029/ 2011JC007469.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1e0f67a-42e1-4f06-9bbe-3d452208faa9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.