Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents the general solution f: G→V of the following functional equation: f(x)−4f(x+y)+6f(x+2y)−4f(x+3y)+f(x+4y)=0,x,y∈G, where (G,+) is an abelian group and V is a linear space.We also investigate its Hyers-Ulam stability on some restricted domains. We apply the obtained results to present some asymptotic behaviors of this functional equation in the framework of normed spaces. Finally, we provide some characterizations of inner product spaces associated with the mentioned functional equation.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20230265
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
- Department of Mathematics, Hanyang University, Seoul, Korea
autor
- Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
autor
- Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
autor
- Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
autor
- School of Science, University of Phayao, Phayao 56000, Thailand
Bibliografia
- [1] P. Kannappan, Functional Equations and Inequalities with Applications, Springer, New York, 2009.
- [2] M. Fréchet, Une définition fonctionelle des polynômes, Nouv. Ann. 49 (1909), 145–162.
- [3] G. G. Johnson, Inner products characterized by difference equations, Proc. Amer. Math. Soc. 37 (1973), 535–536.
- [4] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.
- [5] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.
- [6] F. Skof, Sullaapprossimazione delle applicazioni localmente-additive, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 117 (1983), 377–389.
- [7] S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126–137.
- [8] J. M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl. 276 (2002), 747–762.
- [9] M. A. Tareeghee, A. Najati, M. R. Abdollahpour, and B. Noori, On restricted functional inequalities associated with quadratic functional equations, Aequationes Math. 96 (2022), 763–772.
- [10] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
- [11] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
- [12] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143–190.
- [13] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
- [14] K. W. Jun and H. M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 267–278.
- [15] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer New York, Dordrecht, Heidelberg, London, 2011.
- [16] M. B. Moghimi, A. Najati, and C. Park, A functional inequality in restricted domains of Banach modules, Adv. Difference Equ. 2009 (2009), Art. ID 973709, 14 pp.
- [17] A. Najati and G. Z. Eskandani, Approximation of a mixed functional equation in quasi-Banach spaces, J. Inequal. Pure Appl. Math 10 (2009), Art. ID 24, 17 pp.
- [18] A. Najati and C. Park, On the stability of a cubic functional equation, Acta Math. Sin. (Engl. Ser.) 24 (2008), 1953–1964.
- [19] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Functional Analysis 46 (1982), 126–130.
- [20] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [21] F. Skof, Proprieta locali e approssimazione di operatori, Rend. Semin. Mat. Fis. Milano 53 (1983), 113–129.
- [22] P. Jordan and J. von Neumann, On inner products in linear metric spaces, Ann. Math. 36 (1935), 719–723.
- [23] D. Amir, Characterizations of Inner Product Spaces, Birkhäuser Verlag, 1986.
- [24] J. H. Bae, B. Noori, M. B. Moghimi, and A. Najati, Inner product spaces and quadratic functional equations, Adv. Difference Equ. 139 (2021), 12.
- [25] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995), 368–372.
- [26] C. Park, A. Najati, B. Noori, and M. B. Moghimi, Additive and Fréchet functional equations on restricted domains with some characterizations of inner product spaces, AIMS Math. 7 (2022), 3379–3394.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1e0d33c-2317-4338-8245-50baa13559c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.