Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Non-small cell lung cancer (NSCLC) is a highly prevalent and aggressive type of lung cancer, often associated with a poor prognosis. Cucurbitacin B, a natural tetracyclic triterpene, has demonstrated remarkable anticancer activity. In this study, we engineered a novel drug delivery system, Dex-APDMS@CP1@1@ Cucurbitacin B, which incorporates synthetically derived compound 1 to enhance the therapeutic efficacy of Cucurbitacin B. The system was comprehensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen adsorption techniques. Results revealed excellent stability, a uniform particle size of approximately 500 nm, and a high drug-loading efficiency of 35.2 ± 2.1 wt%. Additionally, the in vitro drug release study indicated that 88.6 ± 3.5% of Cucurbitacin B was released within 12 hours, demonstrating a rapid release profile. The successful encapsulation of the drug was further confirmed by effective fluorescence quenching. In vitro experiments showed that the Dex-APDMS@CP1@1@Cucurbitacin B system significantly inhibited the proliferation of NSCLC cells, highlighting its great potential for targeted cancer therapy.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wz., wykr.
Twórcy
autor
- Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
autor
- Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
autor
- Department of cardiothoracic surgery, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
autor
- Department of cardiothoracic surgery, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
Bibliografia
- 1. Nie, W., Wang, Y., Tian, X., Liu, J., Jin, Z., Xu, J., He, M., Shen, Q., Guo, H. & Luan, T. (2024). Cucurbitacin B and Its Derivatives: A Review of Progress in Biological Activities. Molecules 29 (17), 4193. DOI: 10.3390/molecules29174193.
- 2. Ge, W., Chen, X., Han, F., Liu, Z., Wang, T., Wang, M., Chen, Y., Ding, Y. & Zhang, Q. (2018). Synthesis of Cucurbitacin B Derivatives as Potential Anti-Hepatocellular Carcinoma Agents. Molecules 23 (12), 3345. DOI: 10.3390/molecules23123345.
- 3. Tan, N., Li, Y., Ying, J. & Chen, W. (2024). Histological transformation in lung adenocarcinoma: Insights of mechanisms and therapeutic windows. J. Transl. Int. Med. 12 (5), 452–465. DOI: 10.1515/jtim-2024-0019.
- 4. Zhang, H., Zhao, B., Wei, H., Zeng, H., Sheng, D. & Zhang, Y. (2022). Cucurbitacin B controls M2 macrophage polarization to suppresses metastasis via targeting JAK-2/STAT3 signalling pathway in colorectal cancer. J. Ethnopharmacol. 287, 114915. DOI: 10.1016/j.jep.2021.114915.
- 5. Li, Y., Yan, B. & He, S. (2023). Advances and challenges in the treatment of lung cancer. Biomed. Pharmacother. 169, 115891. DOI: 10.1016/j.biopha.2023.115891.
- 6. Tian, B., Pang, Y., Gao, Y., Meng, Q., Xin, L., Sun, C., Tang, X., Wang, Y., Li, Z., Lin, H. & Wang, L. (2023). A pan-cancer analysis of the oncogenic role of Golgi transport 1B in human tumors. J. Transl. Int. Med. 11 (4), 433–448. DOI: 10.2478/jtim-2023-0002.
- 7. Turner, J., Pond, G. R., Tremblay, A., Johnston, M., Goss, G., Nicholas, G., Martel, S., Bhatia, R., Liu, G., Schmidt, H., Tammemagi, M. C., Puksa, S., Atkar-Khattra, S., Tsao, M. S., Lam, S. & Goffin, J. R. (2021). Risk Perception Among a Lung Cancer Screening Population. Chest 160 (2), 718–730. DOI: 10.1016/j.chest.2021.02.050.
- 8. Traeger, R. S., Woodcock, J., Tan, S., Shi, Z. & Vasquez-Vivar, J. (2025). Tetrahydrobiopterin as a rheostat of cell resistance to oxidant injury. Redox Biol. 79, 103447. DOI: 10.1016/j.redox.2024.103447.
- 9. Luo, Z., Wan, R., Liu, S., Feng, X., Peng, Z., Wang, Q., Chen, S. & Shang, X. (2023). Mechanisms of exercise in the treatment of lung cancer–a mini-review. Front. Immunol. 14, 1244764. DOI: 10.3389/fimmu.2023.1244764.
- 10. Janssen, E. M., Smith, I. P., Liu, X., Pierce, A., Huang, Q., Kalsekar, I., Vachani, A. & Mansfield, C. (2023). Patient Preferences for Lung Cancer Interception Therapy. JAMA Netw. Open 6 (11), e2342681. DOI: 10.1001/jamanetworkopen.2023.42681.
- 11. Bhattacharjee, J., Sarkar, A. & Panda, T. K. (2021). Recent development of alkali metal complex promoted iso-selective ring-opening polymerization of rac-Lactide. Curr. Opin. Green Sust. 31, 100545. DOI: 10.1016/j.cogsc.2021.100545.
- 12. Ahmad, M. G., Balamurali, M. M. & Chanda, K. (2023). Click-derived multifunctional metal complexes for diverse applications. Chem. Soc. Rev. 52 (15), 5051–5087. DOI: 10.1039/d3cs00343d.
- 13. Chen, L. J., Zhao, X., Liu, Y. Y. & Yan, X. P. (2020). Macrophage membrane coated persistent luminescence nanoparticle@ MOF-derived mesoporous carbon core–shell nanocomposites for autofluorescence-free imaging-guided chemotherapy. J. Mater. Chem. B 8 (35), 8071–8083. DOI: 10.1039/d0tb01272f.
- 14. Sun, X., He, G., Xiong, C., Wang, C., Lian, X., Hu, L., Li, Z., Dalgarno, S. J., Yang, Y. W. & Tian, J. (2021). One-Pot Fabrication of Hollow Porphyrinic MOF Nanoparticles with Ultrahigh Drug Loading toward Controlled Delivery and Synergistic Cancer Therapy. ACS Appl. Mater. Interfaces 13 (3), 3679–3693. DOI: 10.1021/acsami.0c20617.
- 15. Das, B. & Gupta, P. (2024). Multimetallic transition metal complexes: Luminescent probes for biomolecule sensing, ion detection, imaging and therapeutic application. Coord. Chem. Rev. 504, 215656. DOI: 10.1016/j.ccr.2024.215656.
- 16. Gaikwad, D., Sutar, R. & Patil, D. (2024). Polysaccharide mediated nanodrug delivery: A review. Int. J. Biol. Macromol. 261 (1), 129547. DOI: 10.1016/j.ijbiomac.2024.129547.
- 17. Srivastav, A. K., Rajput, P. K., Jaiswal, J., Yadav, U. C. S. & Kumar, U. (2024). In vitro and in silico investigation of glycyrrhizic acid encapsulated zein nanoparticles: A synergistic targeted drug delivery approach for breast cancer. Int. J. Biol. Macromol. 266 (2), 131368. DOI: 10.1016/j.ijbiomac.2024.131368.
- 18. Zhao, C., Pan, B., Wang, T., Yang, H., Vance, D., Li, X., Zhao, H., Hu, X., Yang, T., Chen, Z., Hao, L., Liu, T. & Wang, Y. (2023). Advances in NIR-Responsive Natural Macromolecular Hydrogel Assembly Drugs for Cancer Treatment. Pharmaceutics 15 (12), 2729. DOI: 10.3390/pharmaceutics15122729.
- 19. Korpi, A., Anaya-Plaza, E., Välimäki, S. & Kostiainen, M. (2020). Highly ordered protein cage assemblies: A toolkit for new materials. WIREs Nanomed. Nanobiotechnol. 12 (1), e1578. DOI: 10.1002/wnan.1578.
- 20. Pauli, F. P., Freitas, C. S., Pereira, P. R., Magalhães, A., De Carvalho Da Silva, F., Paschoalin, V. M. F. & Ferreira, V. F. (2023). Exploring the Antimicrobial and Antitumoral Activities of Naphthoquinone-Grafted Chitosans. Polymers 15 (6), 1430. DOI: 10.3390/polym15061430.
- 21. Li, D. Q., Li, J., Dong, H. L., Li, X., Zhang, J. Q., Ramaswamy, S. & Xu, F. (2021). Pectin in biomedical and drug delivery applications: A review. Int. J. Biol. Macromol. 185, 49–65. DOI: 10.1016/j.ijbiomac.2021.06.088.
- 22. Kong, W. Q., Gao, C. D., Hu, S. F., Ren, J. L., Zhao, L. H. & Sun, R. C. (2017). Xylan-Modified-Based Hydrogels with Temperature/pH Dual Sensitivity and Controllable Drug Delivery Behavior. Materials 10 (3), 304. DOI: 10.3390/ma10030304.
- 23. Agnes, M., Mazza, A., Malanga, M., Manet, I. (2024). Sculpturing the future of water-soluble cyclodextrin branched polymers in pharmaceutical applications. J. Mater. Chem. B 12 (33), 7969–7976. DOI: 10.1039/d4tb01165a.
- 24. Joyce, K., Fabra, G. T., Bozkurt, Y., Pandit, A. (2021). Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct. Tar. 6 (1), 122. DOI: 10.1038/s41392-021-00512-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1e0b424-603e-453a-849b-f48880a6dc9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.