Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We investigate the period-doubling phenomenon in aperiodically forced asymmetric Duffing oscillator. We use the known steady-state asymptotic solution – the amplitude-frequency implicit function – and known criterion for the existence of period-doubling, also in an implicit form. Working in the framework of differential properties of implicit functions, we derive analytical formulas for the birth of period-doubled solutions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
713--719
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
- Kielce University of Technology, Kielce, Poland
autor
- Kielce University of Technology, Kielce, Poland
Bibliografia
- 1. Feigenbaum M.J., 1978, Quantitative universality for a class of nonlinear transformations, Journal of Statistical Physics, 19, 25-52.
- 2. Fikhtengol’ts G.M., 1965, The Fundamentals of Mathematical Analysis, I.N. Sneddon (Edit.), 2, Chapter 19, Elsevier (translated from Russian).
- 3. Jordan D.W., Smith P., 1999, Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems, Oxford University Press, New York.
- 4. Kovacic I., Brennan M.J., 2011, Forced harmonic vibration of an asymmetric Duffing oscillator, [In:] The Duffing Equation: Nonlinear Oscillators and Their Behavior, I. Kovacic, M.J. Brennan (Edit.), John Wiley & Sons, Hoboken, New Jersey, 277-322.
- 5. Kyzioł J., Okniński A., 2022, Localizing bifurcations in non-linear dynamical systems via analytical and numerical methods, Processes, 10, 1, 127.
- 6. Kyzioł J., Okniński A., 2023, Asymmetric Duffing oscillator: jump manifold and border set, Nonlinear Dynamics and Systems Theory, 23, 1, 46-57.
- 7. Nusse H.E., Yorke J.A., 1998, Dynamics: Numerical Explorations, Accompanying Computer Program Dynamics, Applied Mathematical Sciences, 101, Springer.
- 8. Szemplińska-Stupnicka W., 1987, Secondary resonances and approximate models of routes to chaotic motion in non-linear oscillators, Journal of Sound and Vibration, 113, 1, 155-172.
- 9. Szemplińska-Stupnicka W., 1988, Bifurcations of harmonic solution leading to chaotic motion in the softening type Duffing’s oscillator, International Journal of Non-Linear Mechanics, 23, 4, 257-277.
- 10. Szemplińska-Stupnicka W., Bajkowski J., 1986, The 12 subharmonic resonance and its transition to chaotic motion in a non-linear oscillator, International Journal of Non-Linear Mechanics, 21, 5, 401-419.
- 11. Wolfram Research, Inc., 2020, Mathematica, Version 12.1, Champaign, IL.
- 12. Xu Y., Luo A.C.J., 2020, Independent period-2 motions to chaos in a van der Pol-Duffing oscillator, International Journal of Bifurcation and Chaos, 30, 15, 2030045.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1dbe7a1-c875-4d3b-aa6b-041fffe2da32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.