PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics and metal leachability of natural contaminated soil under acid rain scenarios

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Contamination of soil with heavy metals has become a worldwide environmental problem, and receives great attention. In this study, we aim to investigate soil pollution level affected by an industrial district nearby. The total amount of typical heavy metals in the soils (Hengyang Songmu Industrial Park, Hunan Province, China) was analyzed. In addition, the fraction analysis and laboratory simulation leaching via different pH rainwater was carried out to study the migration and transformation of heavy metals. The main results show that the contents of Cu, Zn, Pb, Cr and Cd in the samples were higher than the soil background values in Hunan Province. The heavy metals forms, analyzed by sequential extraction method, show that the proportion of the unstable form of Cd, Zn and Pb was more than 50%. Igeo values indicate that the heavy metal pollution degree of soil sample #5 at the investigated area is recorded in the order of Cd(6.42), Zn(2.28), Cu(1.82), Pb(1.63), and Cr(0.37). Cu, Zn, Pb, Cr and Cd in this area could pose a potential leaching risk to the environment which may affect the food chain and constitute a threat to human health. It would be necessary to take steps to stabilize and monitor the heavy metals in soil.
Rocznik
Strony
91--98
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
  • Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, China
autor
  • School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
autor
  • School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
autor
  • School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
  • Resource and Environmental Science College, Chongqing University, Chongqing 400044, China
autor
  • Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, China
autor
  • School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
autor
  • School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
Bibliografia
  • 1. An, Y.J. (2004). Soil ecotoxicity assessment using cadmium sensitive plants, Environmental Pollution, 127, 1, pp. 21-26.
  • 2. Ash, C., Tejnecký, V., Šebek, O., Houška, J., Chala, A.T., Drahota, P. & Drábek, O. (2015). Redistribution of cadmium and lead fractions in contaminated soil samples due to experimental leaching, Geoderma, 241, pp. 126-135.
  • 3. Baran, A. & Wieczorek, J. (2015). Application of geochemical and ecotoxicity indices for assessment of heavy metals content in soils, Archives of Environmental Protection, 41, 2, pp. 54-63.
  • 4. Chen, J. (2014). Analysis on characteristics and causes of acidic precipitation in Shenzhen in recent years, Environmental Science and Management, 39, 8, pp. 53-56. (in Chinese)
  • 5. Ding, Z., Wang, Q. & Hu, X. (2011). Fractionation of Zn and Pb in bulk soil and size fractions of water-stable micro-aggregates of lead/zinc tailing soil under simulated acid rain, Procedia Environmental Sciences, 10, pp. 325-330.
  • 6. Esshaimi, M., Ouazzani, N., Gharmali, A.E., Berrekhis, F., Valiente, M. & Mandi, L. (2013). Speciation of heavy metals in the soil and the tailings, in the zinc-lead sidi bou othmane abandoned mine, Journal of Environment and Earth Science, 3, 8, pp. 138-146.
  • 7. Gray, C. & Mclaren, R. (2005). The effect of ryegrass variety on trace metal uptake, New Zealand Journal of Agricultural Research, 48, 2, pp. 285-292.
  • 8. Guo, Z.H., Huang, C. & Liao, B. (2003). Effects of simulated acid rains on Cd, Cu and Zn release and their form transformation in polluted soils, The Journal of Applied Ecology, 14, 9, pp. 1547-1550. (in Chinese)
  • 9. Hejabi, A.T., Basavarajappa, H.T., Karbassi, A.R. & Monavari, S.M. (2011). Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India, Environmental Monitoring and Assessment, 182, 1-4, pp. 1-13.
  • 10. Huang, C.Y. (2005). Mobility and speciation of Cd, Cu, and Zn in two acidic soils affected by simulated acid rain, Journal of Environmental Sciences, 17, 2, pp. 332-334.
  • 11. Huang, D.Y., Xu, Y.G., Peng, P., Zhang, H.H. & Lan, J.B. (2009). Chemical composition and seasonal variation of acid deposition in Guangzhou, South China: comparison with precipitation in other major Chinese cities, Environmental Pollution, 157, 1, pp. 35-41.
  • 12. Jonczak, J. & Parzych, A. (2014). The content of heavy metals in the soil and litterfall an a beech-pine-spruce stand in northern Poland, Archives of Environmental Protection, 40, 4, pp. 67-77.
  • 13. Kabala, C., Karczewska, A. & Medynska-Juraszek, A. (2014). Variability and relationships between Pb, Cu, and Zn concentrations in soil solutions and forest floor leachates at heavily polluted sites, Journal of Plant Nutrition and Soil Science, 177, 4, pp. 573-584.
  • 14. Korzeniowska, J. & Stanislawska-Glubiak, E. (2017). Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil, Environmental Science and Pollution Research, 24, 17, pp. 14857-14866.
  • 15. Li, J., Lu, Y., Shim, H., Deng, X., Lian, J. & Jia, Z. (2010). Use of the BCR sequential extraction procedure for the study of metal availability to plants, Journal of Environmental Monitoring, 12, 2, pp. 466-471.
  • 16. Li, J., Lu, Y., Yin, W., Gan, H., Zhang, C. & Deng, X. (2009). Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China, Environmental Monitoring and Assessment, 153, 1-4, pp. 365-375.
  • 17. Li, X., Lee, S.L., Wong, S.C., Shi, W. & Thornton, I. (2004). The study of metal contamination in urban soils of Hong Kong using a GIS-based approach, Environmental Pollution, 129, 1, pp. 113-124.
  • 18. Lu, Y., Yin, W., Huang, L., Zhang, G. & Zhao, Y. (2011). Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China, Environmental Geochemistry and Health, 33, 2, pp. 93-102.
  • 19. Lu, Y., Zhu, F., Chen, J., Gan, H. & Guo, Y. (2007). Chemical fractionation of heavy metals in urban soils of Guangzhou, China, Environmental Monitoring and Assessment, 134, 1-3, pp. 429-439.
  • 20. Markiewicz-Patkowska, J., Hursthouse, A. & Przybyla-Kij, H. (2005). The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit, Environment International, 31, 4, pp. 513-521.
  • 21. Miretzky, P., Avendaño, M.R., Muñoz, C. & Carrillo-Chavez, A. (2011). Use of partition and redistribution indexes for heavy metal soil distribution after contamination with a multi-element solution, Journal of Soils and Sediments, 11, 4, pp. 619-627.
  • 22. Muller, G. (1979). Heavy metals in the sediments of the Rhine changes since 1971, Umschan, 79, pp. 778-783. (in German)
  • 23. Nowack, B., Schulin, R. & Luster, J. (2010). Metal fractionation in a contaminated soil after reforestation: temporal changes versus spatial variability, Environmental Pollution, 158, 10, pp. 3272-3278.
  • 24. Onweremadu, E.U., Eshett, E.T. & Osuji, G.E. (2007). Temporal variability of selected heavy metals in automobile soils, International Journal of Environmental Science & Technology, 4, 1, pp. 35-41.
  • 25. Panagos, P., Van Liedekerke, M., Yigini, Y. & Montanarella, L. (2013). Contaminated sites in Europe: review of the current situation based on data collected through a European network, Journal of Environmental and Public Health, 2013, pp. 1-11.
  • 26. Rauret, G., López-Sánchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C. & Ure, A. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials, Journal of Environmental Monitoring, 1, 1, pp. 57-61.
  • 27. Słowik, M., Młynarczyk, Z. & Sobczyński, T. (2011). Mobility of chromium and lead originating from weaving industry: Implications for relative dating of lowland river floodplain deposits (The Obra River, Poland), Archives of Environmental Protection, 37, 2, pp. 131-150.
  • 28. Stanislawska-Glubiak, E. & Korzeniowska, J. (2018). Time factor influence on soil heavy metal concentration in relation to soil contamination assessment, Archives of Environmental Protection, 44, 3, pp. 68-76.
  • 29. Wen, F., Hou, H., Yao, N., Yan, Z., Bai, L. & Li, F. (2013). Effects of simulated acid rain, EDTA, or their combination, on migration and chemical fraction distribution of extraneous metals in ferrosol, Chemosphere, 90, 2, pp. 349-357.
  • 30. Wang, D.Z., Jiang, X., Rao, W. & He, J.Z. (2009). Kinetics of soil cadmium desorption under simulated acid rain, Ecological Complexity, 6, 4, pp. 432-437.
  • 31. Zhang, J., Zhang, Y., Zhang, H. & Zhang, W. (2016). Evaluation of heavy metal pollution in Dazhai mellow-soil field, Asian Agricultural Research, 8, 1, pp. 40-43
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1d9c304-2040-4dfa-8cb6-451f823eb65a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.