PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An experimental and numerical study of supercavitating flows around axisymmetric cavitators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It has been shown that developing a supercavitating flow around under-water projectiles has a significant effect on their drag reduction. As such, it has been a subject of growing attention in the recent decades. In this paper, a numerical and experimental study of supercavitating flows around axisymmetric cavitators is presented. The experiments are conducted in a semi-open loop water tunnel. According to the Reynolds-Averaged Navier-Stokes equations and mass transfer model, a three-component cavitation model is proposed to simulate the cavitating flow. The corresponding governing equations are solved using the finite element method and the mixture Rayleigh-Plesset model. The main objective of this research is to study the effects of some important parameters of these flows such as the cavitation number, Reynolds number and conic angle of the cavitators on the drag coefficient as well as the dimensions of cavities developed around the submerged bodies. A comparison of the numerical and experimental results shows that the numerical method is able to predict accurately the shape parameters of the natural cavitation phenomena such as cavity length, cavity diameter and cavity shape. The results also indicate that the cavitation number declines from 0.32 to 0.25 leading to a 28 percent decrease in the drag coefficient for a 30° cone cavitator. By increasing the Reynolds number, the cavity length is extended up to 322% for a 60° cone cavitator.
Rocznik
Strony
795--810
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
  • University of Sistan and Baluchestan, Department of Mechanical Engineering, Zahedan, Iran
autor
  • University of Sistan and Baluchestan, Department of Mechanical Engineering, Zahedan, Iran
autor
  • Ferdowsi University of Mashhad, Department of Mechanical Engineering, Mashhad, Iran
autor
  • Imam Hossein University, Department of Mechanical Engineering, Tehran, Iran
autor
  • University of Sistan and Baluchestan, Department of Mechanical Engineering, Zahedan, Iran
Bibliografia
  • 1. Ahn B., Ahn C., Lee C., Kim T., 2010, Experimental and numerical studies on supercavitating flow of axisymmetric cavitators, International Journal of Naval Architecture and Ocean Engineering, 2, 39-44
  • 2. Athavale M.M, Li H.Y., Jiang Y., Singal A.K., 2002, Application of the full cavitation model to pumps and Inducers, International Journal of Rotating Machinery, 8, 45-56
  • 3. Chen Y., Lu C.-J., 2008, A homogenous-equilibrium model based numerical code for cavitation flows and evaluation by computation cases, Journal of Hydrodynamics, 20, 2, 186-194
  • 4. Chen Y., Lu C.-J., Wu L., 2006, Modelling and computation of unsteady turbulent cavitation flow, Journal of Hydrodynamics, Ser. B, 18, 5, 559-566
  • 5. Choi J.Y., Ruzzene M., 2006. Stability analysis of supercavitating underwater vehicles with adaptive cavitator, International Journal of Mechanical Sciences, 48, 1360-1370
  • 6. Deng F., Zhang Y., Chen W., Yuan X., Dang J., 2004, Experimental investigation on the incipiency and the shape of supercavity for slender bodies with different headforms, Journal of Northwestern Polytechnical University, 22, 3, 269273
  • 7. Fong X.-M., Lu C.-J., Hu T.-Q., 2002, Experimental research on a supercavitating slender body of revolution with ventilation, Journal of Hydrodynamics, Ser. B, 2, 17-23
  • 8. Franc J.P., Michel J.M., 2004, Fundamentals of Cavitation, Section 6, Kluwer Academic Publisher, Netherlands
  • 9. Hrubes J.D., 2001, High-speed imaging of supercavitating underwater projectiles, Experiments in Fluids, 30, 57-64
  • 10. Huang B., Wang G., 2011, Partially averaged Navier-Stokes method for time-dependent turbulent cavitating flows, Journal of Hydrodynamics, 23, 1, 26-33
  • 11. Huang S., He M., Wang C., Chang X., 2010, Simulation of cavitating flow around a 2-D hydrofoil, Journal of Marine Science and Application, 9, 63-68
  • 12. Hu X., Gao Y., 2010, Investigation of the disk cavitator cavitating flow characteristics under relatively high cavitation number, Applied Mechanics and Materials, 29-32, 2555-2562
  • 13. Huuva T., 2008, Large eddy simulation of cavitating and non-cavitating flow, PhD thesis, Chalmers University of Technology, Sweden
  • 14. Ji B., Luo X., 2010, Numerical investigation of the ventilated cavitating flow around an underwater wehicle based on a three-component caviation model, Journal of Hydrodynamics, 22, 6, 753-759
  • 15. Kuklinski R., Henoch C., Castano J., 2001, Experimental study of ventilated cavities on dynamic test model, 4th International Symposium on Cavitation, California, USA
  • 16. Kunz R.F., Boger D.A., Chyczewski T.S., Stinebring D.R., Gibeling H.J., Govindan T.R., 1999. Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies, ASME Paper FEDSM, 99-7364
  • 17. Launder B.E., Spalding D.B., 1972, Lectures in Mathematical Models of Turbulence, Academic Press, London, UK
  • 18. Lee Q.-T., Xue L.-P., He Y.-S., 2008, Experimental study of ventilated supercavities with a dynamic pitching model, Journal of Hydrodynamics, 20, 4, 456-460
  • 19. Li X., Wang G., Zhang M., Shyy W., 2008, Structures of supercavitating multiphase flows, Journal Thermal Science, 47, 1263-1275
  • 20. Lin H., Lin Q., Hu T., 2004, An experimental study on fluctuating hydrodynamic loads on cavitating axisymmetric slender bodies, Journal of Hydrodynamics, Ser. A, 19, 6, 794-800
  • 21. Lindau J.W., Kunz R.F., Boger D.A., Stinebring D.R., Gibeling H.J., 2002, High Reynolds number, unsteady, multiphase CFD modeling of cavitating flows, Journal of Fluids Engineering, Transactions of ASME, 124, 3, 607-616
  • 22. Liu D., Hong F., Lu F., 2010, The numerical and experimental research on unsteady cloud cavitating flow of 3D elliptical hydrofoil, Journal of Hydrodynamics, 22, 5, 759-763
  • 23. Liu D., Liu S., Wu Y., Xu H., 2009, LES numerical simulation of cavitation bubble shedding on ALE 25 and ALE 15 hydrofoils, Journal of Hydrodynamics, 21, 6, 807-813
  • 24. Logvinovich G.V., 1969, Hydrodynamics of Flows with Free Boundaries, Kiev, USSR, Naukova Dumka
  • 25. Logvinovich G.V., 1980, Some problems in planing surfaces (in Russian), Trudy Tsagi, 2052, Moscow, Russia, Central Aero and Hydrodynamics Institute
  • 26. Lu N., Bensow R.E., Bark G., 2010, LES of unsteady cavitation on the delft twisted foil, Journal of Hydrodynamics, Ser. B, 22, 5, 784-791
  • 27. Merkle C.L., Feng J., Buelow P.E.O., 1998, Computational modeling of the dynamics of sheet cavitation, Proceeding of the 3rd International Symposium on Cavitation (CAV98), Grenoble, France
  • 28. Nouri N.M., Shienejad A., Eslamdoost A., 2008, Multi phase computational fluid dynamics modeling of cavitating flows over axisymmetric head-forms, IUST International Journal of Engineering Science, 19, 1/5, 71-81
  • 29. Park S., Rhee S.H., 2012, Computational analysis of turbulent supercavitating flow around a twodimensional wedge-shaped cavitator geometry, Computers and Fluids, 70, 73-85
  • 30. Phoemsapthawee S., Leroux J., Kerampran S., Laurens J., 2012, Implementation of a transpiration velocity based cavitation model within a RANS solver, European Journal of Mechanics B/Fluids, 32, 45-51
  • 31. Pouffary B., Fortes-Patella R., Reboud J.L., 2003, Numerical simulation of cavitating flow around a 2D hydrofoil: a barotropic approach, Fith International Symposium on Cavitation, Osaka, Japan
  • 32. Saranjam B., 2013, Experimental and numerical investigation of an unsteady supercavitating moving body, Ocean Engineering, 59, 9-14
  • 33. Schnerr G., Sauer J., 2001, Physical and numerical modeling of unsteady cavitation dynamics, 4th International Conference on Multiphase Flows, New Orleans, USA
  • 34. Semenenko V.N., 2001, Dynamic processes of supercavitation and computer simulation, RTO AVT Lecture Series on Supercavitatingows at VKI
  • 35. Singhal A.K., Athavale M.M., Li H., Jiang Y., 2002, Mathematical basis and validation of the full cavitation model, Journal of Fluids Enginnering, 124, 617-624
  • 36. Vasin A.D., Paryshev E.V., 2001, Immersion of a cylinder in a fluid through a cylindrical free surface, Journal of Fluid Dynamics, 36, 2, 168-177
  • 37. Wang G., Ostoja-Starzewski M., 2007, Large eddy simulation of a sheet/cloud cavitation on a NACA 0015 hydrofoil, Applied Mathematical Modelling, 31, 3, 417-447
  • 38. Wang H., Zhang J., Wei Y., Yu K., Jia L., 2005, Study on relations between cavity form and typical cavitator parameters, Journal of Hydrodynamics, Ser. A, 20, 2, 251-257
  • 39. Wu J., Wang G., Shyy W., 2005, Time-dependent turbulent cavitating flow computation with interfacial transport and filter-based models, International Journal for Numerical Methods in Fluids, 49, 739-746
  • 40. Wu X., Chahine G.L., 2007, Characterization of the content of the cavity behind a high-speed supercavitating body, Journal of Fluids Enginnering, 45, 129-136
  • 41. Zhang X.-W., Wei Y.-J., Zhang J.-Z., Chen Y., Yu K.-P., 2007, Experimental research on the shape characters of natural and ventilated supercavitation, Journal of Hydrodynamics, Ser. B, 19, 5, 564-571
  • 42. Zou W., Yu K., Wan X., 2010, Research on the gas-leakage rate of unsteady ventilated supercavity, Journal of Hydrodynamics, 22, 5, 778-783
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1d9279e-638b-4c17-9144-bf80da75d3a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.