PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optymalizacja parametrów światłowodowych czujników do pomiaru temperatury

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Optimization of Fiber Optic Sensors Parameters for Temperature Measurement
Języki publikacji
PL
Abstrakty
EN
Nowadays, there are many devices the failure of which could not only lead to huge financial losses but also wreak havoc in the natural environment. Such circumstances require us to analyze the electrical components before something dangerous happens. Early reaction gives an opportunity to implement prevention measures and avoid serious consequences. Optical fiber sensors have a number of advantages, the most important of which include immunity to electromagnetic interference, low weight and the ability to incorporate them within the measured structure. Fiber Bragg gratings have other special advantages; for instance, they enable the creation of distributed sensing arrays, which contain multiple sensors. They are also insensitive to optical power source fluctuations. The multitude of FBG sensors applications extorted fabrication of gratings with different spectral shapes. Uniform gratings have spectra with strong side lobes which could affect the processing characteristics of temperature sensor. Apodization is one of ways for affecting the gratings spectral shape. This article concerns simulations based on an original computer application, which is numerical model implementation of Transfer Matrix Method. It allows to determine the spectral characteristic of optical components on the basis of the theory of coupled modes and matrix description of electromagnetic wave that passes through optical fiber. Different fiber gratings lengths were analyzed according to their reflection and transmission spectra. In the beginning, the impact of various parameters on the Bragg grating spectral characteristics was checked. Results of those simulations have been attached. The article covers measurement of real optic elements put in climatic chamber and Bragg gratings, produced under very strict conditions. The profile of the laser beam was approximated by Gaussian function using MatLab software and additional tools from package. Function matching has been defined as statistical parameters and evaluated later. The comparison of mathematical model and physical optical system, based on previously designated function apodization, has been covered. The results of these two visualizations have been summarized to better exemplify the differences and similarities. The previously measured fiber Bragg grating has been proposed as temperature sensor and parameters which may be used to construct an optical fiber temperature sensor were established. Temperature sensitivity was determined in the end.
Rocznik
Strony
309--324
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Politechnika Lubelska
autor
  • Politechnika Lubelska
autor
  • Politechnika Lubelska
  • Politechnika Lubelska
  • Kazakh National Research Technical University named after K.I. Satpayev
  • Kazakh National Research Technical University named after K.I. Satpayev
Bibliografia
  • 1. Abdulina, S. R., Vlasov, A. A. (2014). Suppression of side lobs in the fiber Bragg greting reflection spectrum. Optoelectronics, Instrumentation and Data Processing, 50(1), 75-86.
  • 2. Chen, Y., Chen, L., Liu, H., Wang, K. (2013). Research of FBG sensor signal wavelength demodulation based on improved wavelet transform. Optic, 124, 4802-4804.
  • 3. Cięszczyk, S., Kisała, P., Inverse problem of determining periodic surface profile oscillation defects of steel materials with a fiber Bragg grating sensor. Appl. Opt. 55, 1412-1420.
  • 4. Demirdag, O., Yildirim, B. (2016). Comparing transfer matrix metod and ANFIS in free vibration analysis of Timoshenko columns with attachements. Res. Eng. Struct. Mat., 2, 1-18.
  • 5. Harasim, D., Gulbakhar, Y. (2015). Improvement of FBG peak wavelength demodulationusing digital signal processing algorithms. In: Proc. SPIE 9662, 966212, Photonics Applications in Astronomy, Communications, Industry and High-Energy Physics Experiments 2015.
  • 6. Harasim. D., Kisała, P. (2015). Układy przesłuchujące multipleksowane światłowodowe czujniki Bragga. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 5(4), 77-84.
  • 7. Kashyap, R. (1999). Fiber Bragg Gratings. San Diego: Academic Press.
  • 8. Kenneth O., Meltz G., Fiber Bragg Grating Technology Fundamentals and Overwiev. Journal of Lightwave Technology, 15(8), 1263-1276.
  • 9. Khalid, K. S., Zafrullah, M., Bilal, S. M., Mirza, M. A. (2012). Simulation and analysis of Gaussian apodized fibr Bragg grating strain sensor. Journal of Optical Technology, 7(10), 667-673.
  • 10. Kisała, P. (2015). Method of simultaneous measurement of bending forces and temperature using Bragg gratings. In: Proc. SPIE 9506, Optical Sensors 2015.
  • 11. Kisała, P., Cięszczyk, S. (2015). Method of simultaneous measurement of two direction force and temperature using FBG sensor head. Applied Optics 54(10), 2677-2687.
  • 12. Kotyra, A. (2014). Optoelektroniczne systemy w zastosowaniach diagnostycznych i pomiarowych. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 4(2), 9-10.
  • 13. Majumder, M., Gangopadhyay, T. K., Chakraborty, A. K., Dasgupta, K., Bhattacharya, D. K. (2008). Fiber Bragg gratings in structural health monitoring prezent status and applications. Sensors and Actuators, 147, 150-164.
  • 14. Negri, L., Nied, A., Kalinowski, H., Paterno, A. (2011). Benchmark for Peak Detection Algorithms in FIber Bragg Grating Interrogation and a New Neural Network for its Performance Improvement. Sensors, 11, 3466-3482.
  • 15. Pereira, G., McGugan M., Mikkelsen L.P., Method for independent strain and temperature measurement in polymeric tensile test specimen using embedded FBG sensors. Polymer Testing, 50, 125-134.
  • 16. Wójcik, W., Kisała, P., (2010). Metoda wyznaczania funkcji apodyzacji światłowodowych siatek Bragga na podstawie ich charakterystyk widmowych. Przegląd Elektrotechniczny, 86(10), 127-130.
  • 17. Wójcik, W., Kisała, P., (2009). The application of inverse analysis in strain distribution recovery using the fibre Bragg grating sensors. Metrology and Measurement Systems, 16(4), 649-660
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1d1e84d-80cd-43ac-97bc-2b9c1ba05178
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.