PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the Feasibility of Guts Waste Valorization by Composting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research, a hot composting experiment was carried out with a mixture of three waste fractions; guts 50%, manure 30% and dead leaves 20%. The experiment showed that the resulting compost has a high-level organic substance content and a minor salt content that can be a healthy soil amendment. However, the experiment did not evaluate the compost mass evolution during 45 days of the mechanism. The main aim of this work tried to improve the performance of valorization by reducing the duration of composting, evaluating its economic efficiency (monitoring of mass), and improving the qualitative efficiency. To this effect, the feasibility study aimed to rapidly compost a mixture of 50% underground guts waste and 50% manure over a period of 23 days. The results proved that the C/N rate and electrical conductivity of the compost obtained is above the limits requested by most standards. Moreover, the temperature recorded of the heap did not exceeded 39.53°C at any day of composting. Nevertheless, the economic efficiency reached 47.9%.
Twórcy
  • Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni Mellal, Morocco
  • Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni Mellal, Morocco
  • Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni Mellal, Morocco
autor
  • Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni Mellal, Morocco
autor
  • Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni Mellal, Morocco
autor
  • Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni Mellal, Morocco
  • Laboratory of Drug Sciences, Biomedical Research, and Biotechnology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
  • Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni Mellal, Morocco
  • Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Science and Technologies, Sultan Moulay Slimane University, BP 523, Beni Mellal, Morocco
Bibliografia
  • 1. Adimalla, N., Chen, J., Qian, H. 2020. Spatial Characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicology and Environmental Safety 194(126), 110406. doi: 10.1016/j.ecoenv.2020.110406.
  • 2. Ashraf, R., Sultana, B., Riaz S., Mushtaq, M., Iqbal, M., Nazir, A., Atif, M., Zafar, Z. 2018. Fortification of phenolics, antioxidant activities and biochemical attributes of radish root by plant leaf extract seed priming. Biocatalysis and Agricultural Biotechnology 16:115–20. doi: 10.1016/j.bcab.2018.07.012.
  • 3. Ayed, F., Boussadia, O., Grissa, H., Abdallah, R.A.B., Jabnoun-Khiareddine H., Daami-Remadi M. 2021. Assessment of physico-chemical, microbial and phytotoxic changes of various organic wastes during their composting process. Journal of Environmental and Agricultural Studies 2(2):21–35. doi: 10.32996/jeas.2021.2.2.3.
  • 4. Bernal, M.P., Alburquerque, J.A., Moral, R. 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A Review. Bioresource Technology 100(22):5444–53. doi: 10.1016/j.biortech.2008.11.027.
  • 5. de Bertoldi, M., Vallini, G., Pera, A. 1983. The biology of composting: A review. Waste Management & Research 1(2): 157–76. doi: 10.1177/0734242X8300100118.
  • 6. de Mendonça Costa, M.S.S., Bernardi, F.H., de Mendonça Costa, L.A., Pereira, D.C., Lorin, H.E.F., Rozatti, M.A.T., Carneiro, L.J. 2017. Composting as a cleaner strategy to broiler agro-industrial wastes: Selecting carbon source to optimize the process and improve the quality of the final compost. Journal of Cleaner Production 142: 2084–92. doi: 10.1016/j. jclepro.2016.11.075.
  • 7. Diaz, L.F., Savage G.M. 2007. Chapter 4 Factors That Affect the Process. Waste Management Series 8:49–65. doi: 10.1016/S1478-7482(07)80007-8.
  • 8. Erickson, L., Fayet, E., Kakumanu, B., Davis L. 2004. Disposal Technologies: Anaerobic Digestion.
  • 9. Finore, I., Feola, A., Russo, L., Cattaneo, A., Donato, P. Di, Nicolaus, B., Poli, A., Romano, I. 2023. Thermophilic bacteria and their thermozymes in composting processes: A review. Chemical and Biological Technologies in Agriculture 10(1):1–22. doi: 10.1186/s40538-023-00381-z.
  • 10. Guo, R., Li G., Jiang T., Schuchardt F., Chen T., Zhao Y., Shen Y. 2012. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresource Technology 112:171– 78. doi: 10.1016/j.biortech.2012.02.099.
  • 11. He, K., Zhang, J., Zeng, Y. 2019. Knowledge domain and emerging trends of agricultural waste management in the field of social science: A scientometric review. Science of the Total Environment 670:236–44. doi: 10.1016/j.scitotenv.2019.03.184.
  • 12. Van Heerden, I., Cronjé, C., Swart, S.H., Kotzé, J.M. 2002. Microbial, chemical and physical aspects of citrus waste composting. Bioresource Technology 81(1):71–76. doi: 10.1016/ S0960-8524(01)00058-X.
  • 13. Hiloidhari, M., Das, D., Baruah, D.C. 2014. Bioenergy potential from crop residue biomass in India. Renewable and Sustainable Energy Reviews 32: 504–12. doi: 10.1016/j.rser.2014.01.025.
  • 14. JRC. 2015. Best Available Techniques (BAT) Reference Document for Waste Treatment Industries (Draft).
  • 15. Kumar, M., Ou, Y.L., Lin, J.G. 2010. Co-composting of green waste and food waste at low C/N ratio. Waste Management 30(4):602–9. doi: 10.1016/j. wasman.2009.11.023.
  • 16. Kumar, S., Negi, S., Mandpe, A., Singh, R.V., Hussain, A. 2018. Rapid composting techniques in indian context and utilization of black soldier fly for enhanced decomposition of biodegradable wastes - A comprehensive review. Journal of Environmental Management 227(August):189–99. doi: 10.1016/j. jenvman.2018.08.096.
  • 17. Kupper, T., Bürge, D., Bachmann, H.J., Güsewell, S., Mayer, J. 2014. Heavy metals in source-separated compost and digestates. Waste Management 34(5):867–74. doi: 10.1016/j.wasman.2014.02.007.
  • 18. Liang, C., Das, K.C., McClendon, R.W.. 2003. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresource Technology 86(2):131–37. doi: 10.1016/ S0960-8524(02)00153-0.
  • 19. Makan, A. 2015. Windrow co-composting of natural casings waste with sheep manure and dead leaves. Waste Management 42:17–22. doi: 10.1016/j. wasman.2015.04.019.
  • 20. Mishra, B., Varjani, S., Agrawal, D.H., Mandal, S.K., Ngo, H.H., Taherzadeh, M.J., Chang, J.S., You, S., Guo, W. 2020. Engineering biocatalytic material for the remediation of pollutants: A comprehensive review. Environmental Technology and Innovation 20:101063. doi: 10.1016/j.eti.2020.101063.
  • 21. Moral, R., Paredes, C., Bustamante, M.A., Marhuenda-Egea, F., Bernal, M.P. 2009. Utilisation of manure composts by high-value crops: Safety and environmental challenges. Bioresource Technology 100(22):5454– 60. doi: 10.1016/j.biortech.2008.12.007.
  • 22. Morisaki, N., Phae, C.G., Nakasaki, K., Shoda, M., Kubota, H. 1989. Nitrogen transformation during thermophilic composting. Journal of Fermentation and Bioengineering 67(1):57–61. doi: 10.1016/0922-338X(89)90087-1.
  • 23. Mostafa, N.A., Farag, A.A., Abo-dief, H.M., Tayeb, A.M. 2018. Production of biodegradable plastic from agricultural wastes. Arabian Journal of Chemistry 11(4):546–53. doi: 10.1016/j.arabjc.2015.04.008.
  • 24. Nanyuli, I., Omuterema, S., Muyekho, F.N. 2018. The effects of EM (effective microorganisms) and biochar on the rate of decomposition and the nutrient content of the compost manure produced from the locally available materials during composting in Kakamega Central Sub County Kenya. Journal of Horticulture and Plant Research 4:33–47. doi: 10.18052/www.scipress.com/jhpr.4.33.
  • 25. Onwosi, C.O., Igbokwe, V.C., Odimba, J.N., Eke, I.E., Nwankwoala, M.O., Iroh, I.N., Ezeogu, L.I. 2017. Composting technology in waste stabilization: on the methods, challenges and future prospects. Journal of Environmental Management 190: 140–57. doi: 10.1016/j.jenvman.2016.12.051.
  • 26. Papale, M., Romano, I., Finore I., Giudice, A.L., Piccolo, A., Cangemi, S., Meo, V.Di, Nicolaus, B., Annarita Poli, A. 2021. Prokaryotic diversity of the composting thermophilic phase: The case of ground coffee compost. Microorganisms 9(2):1–19. doi: 10.3390/microorganisms9020218.
  • 27. Patel, G.B., Shah, K.R., Shindhal, T., Rakholiya, P., Varjani, S. 2021. Process parameter studies by central composite design of response surface methodology for lipase activity of newly obtained actinomycete. Environmental Technology and Innovation 23: 101724. doi: 10.1016/j.eti.2021.101724.
  • 28. Pellejero, G., Miglierina, A., Aschkar, A.G., Jiménez-Ballesta, R. 2015. Composting onion (Allium cepa) wastes with alfalfa (Medicago sativa L.) and cattle manure assessment. Agricultural Sciences 06(04):445–55. doi: 10.4236/as.2015.64044.
  • 29. Petric, I., Selimbašić, V. 2008. Development and validation of mathematical model for aerobic composting process. Chemical Engineering Journal 139(2): 304–17. doi: 10.1016/j.cej.2007.08.017.
  • 30. Petric, I., Šestan A., Šestan, I. 2009. Influence of wheat straw addition on composting of poultry manure. Process Safety and Environmental Protection 87(3): 206–12. doi: 10.1016/j.psep.2009.02.002.
  • 31. Rao, P., Rathod, V. 2019. Valorization of food and agricultural waste: a step towards greener future. Chemical Record 19(9):1858–71. doi: 10.1002/ tcr.201800094.
  • 32. Raut, M.P., William, P.S.P.M., Bhattacharyya, J.K., Chakrabarti, T., Devotta, S. 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste - a compost maturity analysis perspective. Bioresource Technology 99(14):6512– 19. doi: 10.1016/j.biortech.2007.11.030.
  • 33. Robert O. Miller. 2002. Test methods for the examination of composting and compost (TMECC) - index. Compost Analysis Proficiency (CAP) Testing Program (December 1997).
  • 34. Said-Pullicino, D., Erriquens, F.G., Gigliotti, G.. 2007. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresource Technology 98(9): 1822–31. doi: 10.1016/j.biortech.2006.06.018.
  • 35. Saravanan, A., Kumar, P.S., Yashwanthraj, M. 2017. Sequestration of toxic Cr(VI) ions from industrial wastewater using waste biomass: A review. Desalination and Water Treatment 68: 245–66. doi: 10.5004/dwt.2017.20322.
  • 36. Sharma, P., Gaur, V.K., Kim, S.H., Pandey, A. 2020. Microbial strategies for bio-transforming food waste into resources. Bioresource Technology 299: 122580. doi: 10.1016/j.biortech.2019.122580.
  • 37. Sobieraj, K., Stegenta-Dąbrowska, S., Koziel, J.A., Andrzej, B.. 2021. Modeling of Co accumulation in the headspace of the bioreactor during organic waste composting. Energies 14(5):1–17. doi: 10.3390/ en14051367.
  • 38. Varjani, S.J. 2017. Microbial Degradation of Petroleum Hydrocarbons. Bioresource Technology 223: 277–86. doi: 10.1016/j.biortech.2016.10.037.
  • 39. Varjani, S., Pandey, A., Upasani, V.N. 2021. Petroleum sludge polluted soil remediation: integrated approach involving novel bacterial consortium and nutrient application. Science of the Total Environment 763:142934. doi: 10.1016/j.scitotenv.2020.142934.
  • 40. Yaashikaa, P.R., Kumar, P.S., Varjani, S. 2022. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresource Technology 343(112234). doi: 10.1016/j.biortech.2021.126126.
  • 41. Yang, F., Li, G., Shi, H., Wang, Y. 2015. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting. Waste Management 36: 70–76. doi: 10.1016/j.wasman.2014.11.012.
  • 42. Zhang, L., Sun, X. 2018. Influence of sugar beet pulp and paper waste as bulking agents on physical, chemical, and microbial properties during green waste composting. Bioresource Technology 267: 182–91. doi: 10.1016/j.biortech.2018.07.040.
  • 43. Zhou, X., Yang, J., Xu, S., Wang, J., Zhou, Q., Li, Y., Tong, X. 2020. Rapid in-situ composting of household food waste. Process Safety and Environmental Protection 141: 259–66. doi: 10.1016/j.psep.2020.05.039.
  • 44. Zöhrer, J., Probst M., Dumfort S., Lenz H., Pecenka, R., Insam, H., Ascher-Jenull, J. 2021. Molecular monitoring of the poplar wood chip microbiome as a function of storage strategy. International Biodeterioration and Biodegradation 156. doi: 10.1016/j.ibiod.2020.105133.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1ca941c-5e56-42c2-92ec-7bc78bba323e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.