PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electronic and optical properties of vacancy and B, N, O and F doped graphene: DFT study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Structural and optical properties of graphene with a vacancy and B, N, O and F doped graphene have been investigated computationally using density functional theory (DFT). We find that B is a p-type while N, O and F doped graphene layers, as well as graphene with a vacancy are n-type semiconductors. Optical properties for both cases of in plane (E⊥c) and out of plane (E‖c) polarization of light are investigated. It is observed that with the increase in the number of electrons entering the supercell, the amount of absorption of the system decreases and the absorption peaks are transferred to higher energies (blue shift).
Twórcy
autor
  • Plasma Physics Center, Sience and Research Branch, Islamic Azad University, Tehran, Iran
  • Plasma Physics Center, Sience and Research Branch, Islamic Azad University, Tehran, Iran
  • Institute for Advanced Technologies, Shahid Rajaee Teacher Training University, 16875-163, Lavizan, Tehran, Iran
Bibliografia
  • [1] K.S. Novoselov, A.K. Geim, S. Morzov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666–669, http://dx.doi.org/10.1126/science.1102896.
  • [2] K.S. Novoselov, A.K. Geim, S. Morzov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature (London) 438 (2005) 197–200, http://dx.doi.org/10.1038/nature04233.
  • [3] C. Meyer Jannik, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets, Nature (London) 446 (2007) 60–63, http://dx.doi.org/10.1038/nature05545.
  • [4] T. Eberlein, U. Bangert, R.R. Nair, R. Jones, M. Gass, A.L. Bleloch, K.S. Novoselov, A. Geim, P.R. Briddon, Plasmon spectroscopy of free-standing graphene films, Phy. Rev. B 77 (2008) 233406, http://dx.doi.org/10.1103/PhysRevB.77.233406.
  • [5] J.L. Cheng, C. Salazar, J.E. Sipe, Optical properties of functionalized graphene, Phys. Rev. B 88 (2013) 045438, http://dx.doi.org/10.1103/PhysRevB.88.045438.
  • [6] F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4 (2010) 611–622, http://dx.doi.org/10.1038/nphoton.2010.186.
  • [7] L. Liu, H. Yao, H. Li, Z. Wang, Y. Shi, Recent advances of low-dimensional materials in lasing applications, FlatChem 10 (2018) 22–38, http://dx.doi.org/10.1016/j.flatc.2018.09.001.
  • [8] S. Kumari, H.P. Mungse, R. Gusain, N. Kumar, H. Sugimura, O.P. Khatri, Octadecanethiol-grafted molybdenum disulfide nanosheets as oil-dispersible additive for reduction of friction and wear, FlatChem 3 (2017) 16–25, http://dx.doi.org/10.1016/j.flatc.2017.06.004.
  • [9] X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nono Lett. 8 (2008) 323327, http://dx.doi.org/10.1021/nl072838r.
  • [10] W.H. Liu, T. Dang, Z.H. Xiao, X. Li, C. Zhu, X. Wang, Carbon nanosheets with atalyst-induced wrinkles formed by plasma-enhanced chemical-vapor deposition, Carbon 49 (2011) 884–889, http://dx.doi.org/10.1016/j.carbon.2010.10.049.
  • [11] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498–3502, http://dx.doi.org/10.1021/nl802558y.
  • [12] O.V. Yazyev, M.I. Katsnelson, Magnetic correlations at graphene edges: basis for novel spintronics devices, Phys. Rev. Lett. 100 (2008) 047209, http://dx. doi.org/10.1103/PhysRevLett.100.047209.
  • [13] O.V. Sedelnikova, L.G. Bulusheva, A.V. Okotrub, Ab initio study of dielectric response of rippled graphene, J. Chem. Phys. 134 (2011) 244707, http://dx.doi.org/10.1063/1.3604818.
  • [14] K.M. Mccreary, K. Pi, A.G. Swartz, W. Han, W. Bao, C.N. Lau, F. Guinea, M.I. Katsnelson, R.K. Kawakami, Effect of cluster formation on graphene mobility, Phys. Rev. B 81 (2010) 115453, http://dx.doi.org/10.1103/PhysRevB.81.115453.
  • [15] C.P. Herrero, R. Ramirez, Diffusion of hydrogen in graphite: a molecular dynamics simulation, J. Phys. D 43 (2010) 255402, http://dx.doi.org/10.1088/0022-3727/43/25/255402.
  • [16] E.J. Dopluck, M. Scheffler, Ph.J.D. Lindan, Hallmark of perfect graphene, J. Phys. Rev. Lett. 92 (2004) 22, http://dx.doi.org/10.1103/PhysRevLett.92.225502.
  • [17] K. Pi, K.M. McCreary, W. Bao, W. Han, Y.F. Chiang, Y. Li, S.W. Tsai, C.N. Lau, R.K. Kawakami, Electronic doping and scattering by transition metals on graphene, Phys. Rev. B 80 (2009) 075406, http://dx.doi.org/10.1103/PhysRevB.80.075406.
  • [18] P.A. Denis, Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur, Chem. Phys. Lett. 492 (2010) 251–257, http://dx.doi.org/10.1016/j.cplett.2010.04.038.
  • [19] M. Rafique, Y. Shuai, H.P. Tan, M. Hassan, Structural, electronic and magnetic properties of 3d metal trioxide clusters-doped monolayer graphene: a first-principles study, Appl. Surface Science 399 (2017) 20–31, http://dx.doi.org/10.1016/j.apsusc.2016.12.017.
  • [20] M.S. Sharif Azadeh, A. Kokabi, M. Hosseini, M. Fardmanesh, Tunable bandgap opening in the proposed structure of silicon-doped graphene, Micro & Nano Lette 6 (8) (2011) 582–585, http://dx.doi.org/10.1049/mnl.2011.0195.
  • [21] Y.H. Ho, J.Y. Wu, Y.H. Chiu, J. Wang, M.F. Lin, Electronic and optical properties of monolayer and bilayer graphene, Philos. Trans. Math. Phys. Eng. Sci. 368 (2010) 5445–5458, http://dx.doi.org/10.1098/rsta.2010.0209.
  • [22] M. Wu, C. Cao, J.Z. Jiang, Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study, Nanotechnology. 21 (2010) 505202, http://dx.doi.org/10.1088/0957-4484/21/50/505202.
  • [23] P. Giannizzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. ceresoli, G.L. Chiarroti, M. Cococcioni, I. Dabo, A. Dal corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Scalauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502, http://dx.doi.org/10.1088/0953-8984/21/39/395502.
  • [24] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Ann. Readapt. Med. Phys. 77 (1996) 3865, http://dx.doi.org/10.1103/PhysRevLett.77.3865.
  • [25] Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, Y.H. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano 4 (2010) 1790–1798, http://dx.doi.org/10.1021/nn100315s.
  • [26] X. Zheng, J. Zhicheng, Z. Yulong, W. Jialu, Z. Yabo, Q. Yinghuai, Q. Yitai, One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries, Science Report 6 (2016) 26146, http://dx.doi.org/10.1038/srep26146.
  • [27] R. Satio, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College, London, 1998.
  • [28] J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244, http://dx.doi.org/10.1103/PhysRevB.45.13244.
  • [29] S. Agnoli, M. Favarob, Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications, J. Mater. Chem. A Mater. Energy Sustain. 4 (2016) 5002–5025, http://dx.doi.org/10.1039/C5TA10599D.
  • [30] L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Synthesis, Structure and Properties of Boron and Nitrogen Doped Graphene, Condens. Matter Phys. 21 (2009) 4726–4730, http://dx.doi.org/10.1002/adma.200901285.
  • [31] X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, N-doping of graphene through electrothermal reactions with Ammonia, Science 324 (2009) 768–771, http://dx.doi.org/10.1126/science.1170335.
  • [32] M. Rafique, Y. Shuai, H.P. Tan, M. Hassan, Manipulating intrinsic behaviors of graphene by substituting alkaline earth metal atoms in its structure, RSC Adv. 7 (2017) 16360–16370, http://dx.doi.org/10.1039/C7RA01406F.
  • [33] M. Rafique, Y. Shuai, H.P. Tan, First-principles study on hydrogen adsorption on nitrogen doped graphene, Low Dimens. Syst. Nanostruct. 88 (2017) 115–124, http://dx.doi.org/10.1016/j.physe.2016.12.012
  • [34] F. banhart, J. Kotakoski, A.V. krasheninnikov, Structural defect in graphene, ACS Nano 5 (1) (2011) 26–41, http://dx.doi.org/10.1021/nn102598m.
  • [35] R.I. Masel, Principles of Adsorption and Reaction on Solid Surfaces, John Wiley and Sons, New York, 1996.
  • [36] S.S. Zumdahl, Chemical Principles, fifth ed., Mifflin Company, Houghton, 2005.
  • [37] Z. Ao, S. Li, hydrogenation of graphene and hydrogen diffusion behavior on graphene/Graphane interfac, in: J.R. Gong (Ed.), Graphene Simulation, InTech, Croatia, 2011, 53-74.
  • [38] A. Marinopoulos, L. Reining, A. Rubio, V. Olevano, Ab initio study of the optical absorption and wave-vector-dependent dielectric response of graphite, Condens. Matter Phys. 69 (2004) 245419, http://dx.doi.org/10.1103/PhysRevB.69.245419.
  • [39] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Growth of graphene from solid carbon sources, Nature 468 (2010) 549–552, http://dx.doi.org/10.1038/nature09579.
  • [40] P. Rani, G.S. Dubey, V.K. Jindal, DFT study of optical properties of pure and doped Graphene, Physica. E. Low. Syst. Nanostruct. 62 (2014) 28–35, http://dx.doi.org/10.1016/j.physe.2014.04.010.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1c021d9-7f22-4ee0-b0c2-c65c2c98d2fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.