PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the pulsating properties of a high‑pressure water jet generated in a self‑excited head for erosion processing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water jet is an extensively used method for materials processing due to the possibility of operating in different environments (air, water), its safety during working with hazardous materials, and efficiency while cutting hard and brittle rock blocks. In this article, we have presented results of the research on processing aerated concrete by means of pulsating water jest. The discontinuity in water flow through the nozzle was achieved using an own-construction self-excited head. The intermittent flow had the greatest effect during operating in water environment. Machining efficiency for continuous and pulsating water jest was indicated by measuring erosive effects on processed materials. The occurrences of pulsations were confirmed while measurement of water jet thrust forces acting on piezoelectric sensor. It was concluded that pulsating water jet had greater processing effectiveness in a certain circumstances compared to the continuous flow, during the surface processing of concrete blocks.
Rocznik
Strony
art. e236, 1--16
Opis fizyczny
Bibliogr. 34 poz., il., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Koszalin, Poland
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Koszalin, Poland
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Koszalin, Poland
  • Faculty of Mechanical Engineering, Wroclaw University of Technology, Wroclaw, Poland
  • Branch of the KUT in Szczecinek, Koszalin University of Technology, Szczecinek, Poland
Bibliografia
  • 1. Yakovleva YuV. Cutting of materials by a high-pressure water jet. Int Polym Sci Technol. 2008;35(4):27-28.
  • 2. Borkowski P. A novel technique for spatial objects shaping with a high-pressure abrasive water jet. Strojniski Vestnik/J Mech Eng. 2010;56(5).
  • 3. Borkowski PJ, Borkowski JA. Spatial objects shaping with highpressure abrasive water jet controlled by virtual image luminance. Int J Mech Mechatron Eng. 2013;7(3):433-438.
  • 4. Wu G, Song JH, Hou KB, Wang CD. Application of high-pressure water jet in mine. Adv Mater Res. 2014;1033–1034:1323-6.
  • 5. Huang L, Kinnell P, Shipway PH. Removal of heat-formed coating from a titanium alloy using high pressure water jet: influence of machining parameters on surface texture and residual stress. J Mater Process Technol. 2015;223:129-138.
  • 6. Yang B, Lian K, Zhao Y, Zhu J, Biying AG. Research on automatic cleaning equipment with high pressure water jet for optical pipelines. J Phys Conf Ser. 2020;1654: 012095.
  • 7. Borkowski P. High-pressure water jet technology application for abyssal well renovation. Rocznik Ochrona Środowiska. 2009;11:39-48.
  • 8. Borkowski P, Borkowski J, Woźniak D, Maranda A. Examination of high-pressure water jet usability for high explosives (HE) washing out from artillery ammunition. Cent Eur J Energ Mater. 2008;5(2):21-35.
  • 9. Borkowski PJ. Comminution of copper ores with the use of a high-pressure water jet. Energies. 2020;13:6274.
  • 10. Borkowski PJ, Szada-Borzyszkowski W. Micronization of hard coal with the use of a high-pressure water jet. Energies. 2021;14(16):4745. https://doi. org/10.3390/ en14164745.
  • 11. Fujisawa N, Takano S, Fujisawa K, Yamagata T. Experiments on liquid droplet impingement erosion on a rough surface. Wear. 2018;198-399:158-164.
  • 12. Leu MC, Meng P, Geskin ES, Tismeneskiy L. Mathematical modeling and experimental verification of stationary water jet cleaning process. J Manuf Sci Eng. 1998;120:571-9.
  • 13. Sutowska M, Kapłonek W, Pimenov DY, Gupta MK, Mia M, Sharma S. Influence of variable radius of cutting head trajectory on quality of cutting KERF in the abrasive water jet process for soda-lime glass. Materials. 2020;13: 4277.
  • 14. Hlavac LM, Spadlo S, Krajcarz D, Hlavacova IM. Influence traverse speed on surface quality after water-jet cutting for Hardox steel. In: Proceedings of the metal 2015: 24th international conference on metallurgy and materials, Brno, 3-5 June 2015, pp 723-728.
  • 15. Sutowska M, Łukianowicz C, Szada-Borzyszkowska M. Sequential smoothing treatment of glass work-pieces cut by abrasive water jet. Materials. 2022;15:6894
  • 16. Borkowski P. Basis of high-pressure water-ice jet creation and application for surface treatment, Surface Treatment VI. Boston: WIT Press; 2003. p. 85-95.
  • 17. Hloch S, Adamčik P, Nag A, Srivastava M, Čuha D, Muller M, Hromasova M, Klich J. Hydrodynamic ductile erosion of aluminium by a pulsed water jet moving in an inclined trajectory. Wear. 2019;428-429:178-92.
  • 18. Dehkhoda S, Hood M. An experimental study of surface and subsurface damage in pulsed water-jet breakage of rocks. Int J Rock Mech Min Sci. 2013;63:138-47.
  • 19. Spadło S, Bańkowski D, Młynarczyk P, Hlavačova IM. Influence of local temperature changes on the material microstructure in abrasive water jet machining (AWJM). Materials. 2021;14(18):5399.
  • 20. Perec A, Trieb F, Pude F. Some investigations into 1,000 MPa pure waterjet cutting. In: Klichova D, Sitek L, Hloch S, Valentinčič J, eds. Advances in water jetting. Cham: Springer; 2021. p. 155-63.
  • 21. Perec A, Radomska-Zalas A. Abrasive water jet cutting of stainless-steel optimization by orthogonal array approach. Acta Univ Cibiniensis Tech Ser. 2019;71(1):55-61.
  • 22. Chomka G, Chodor J, Kukiełka L, Kasperowicz M. The use of a high-pressure water-ice jet for removing worn paint coating in renovation process. Materials. 2022;15:1168.
  • 23. Foldyna J. Use of acoustic waves for pulsating water jet generation. In: Beghi M, editor. Acoustic waves: from microdevices to helioseismology. London: IntechOpen; 2011.
  • 24. Bresee JC, Cristy GA, McClain WC. Some Comparison of continuous and pulsed jets for excavation. In: Proceedings of the 1st international symposium on jet cutting technology, Cranfield (1972).
  • 25. Heymann FJ. High-speed impact between a liquid drop and a solid surface. J Appl Phys. 1969;40(13):5113-22.
  • 26. Wylie EB, Rodriguez SE. Pipeline dynamics and the pulsed jet. In: Proceedings of the 1st international symposium on jet cutting technology, Cranfield (1972).
  • 27. Edwards DG, Smith RM, Farmer G. The coherence of impulsive water jets. In: Sixth international symposium on jet cutting technology, Surrey, p. 123-140 (1982).
  • 28. Huang YC, Hammitt FT, Yang WJ. Mathematical modelling of normal impact between a finite cylindrical liquid jet and non-slip, flat rigid surface. In: Proceedings of the 1st international symposium on jet cutting technology, Cranfield, p. A4-57–A4-68 (1972).
  • 29. Kinslow R. Rain impact damage to supersonic radomes. Final Report, Tennessee Technological University, No DAA H 01-72-C-0375 (1972).
  • 30. Edney B. Experimental studies of pulsed water jets. In: 3rd International symposium on jet cutting technology, p. B2:11-B2:26 (1976).
  • 31. Tripathi R, Hloch S, Chattopadhyaya S, Klichova D, Ščučka J, Das AK. Application of the pulsating and continuous water jet for granite erosion. Int J Rock Mech Min Sci. 2020.
  • 32. Li H, Liu S, Jia J, Wang F, Guo C. Numerical simulation of rock breaking under the impact load of self-excited oscillating pulsed waterjet. Tunn Undergr Space Technol. 2020;96: 103179.
  • 33. Szada-Borzyszkowska M, Kacalak W, Lipiński D, Bałasz B. Analysis of the erosivity of high-pressure pulsating water jets produced in the self-excited drill head. Materials. 2021;14: 4165.
  • 34. Borkowski J, Szada-Borzyszkowska M, Borkowski P. Water jet characteristics generated inside the self-excited pulsing head. Mechanik. 2014;8-9:88-93.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1b36869-fc59-4a9b-937f-53038a88799f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.