PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Different kinds of boundary conditions for time-fractional heat conduction equation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The time-fractional heat conduction equation with the Caputo derivative of the order 0 ˂ α ˂ 2 is considered in a bounded domain. For this equation different types of boundary conditions can be given. The Dirichlet boundary condition prescribes the temperature over the surface of the body. In the case of mathematical Neumann boundary condition the boundary values of the normal derivative are set, the physical Neumann boundary condition specifies the boundary values of the heat flux. In the case of the classical heat conduction equation (α = 1), these two types of boundary conditions are identical, but for fractional heat conduction they are essentially different. The mathematical Robin boundary condition is a specification of a linear combination of the values of temperature and the values of its normal derivative at the boundary of the domain, while the physical Robin boundary condition prescribes a linear combination of the values of temperature and the values of the heat flux at the surface of a body.
Twórcy
autor
  • Institute of Mathematics and Computer Science Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
Bibliografia
  • [1] Ya.S. Podstrigach, Yu.M. Kolyano. Generalized Thermomechanics. Naukova Dumka, Kiev 1976. (In Russian).
  • [2] D.D. Joseph, L. Preziosi. Heat waves. Rev. Modern Phys., 61, 41-73, 1989.
  • [3] R. Metzler, J. Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339, 1-77, 2000.
  • [4] R. Metzler, J. Klafter. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen., 37, R161-R208, 2004.
  • [5] Y.Z. Povstenko. Fractional heat conduction equation and associated thermal stress. J. Thermal Stresses, 28, 83-102, 2005.
  • [6] S. Bargmann, P. Steinmann, P.M. Jordan. On the propagation of second-sound in linear and nonlinear media: results from Green-Naghdi theory. Phys. Lett. A, 372, 4418-4424, 2008.
  • [7] R. Quintanilla, P.M. Jordan. A note on the two temperature theory with dual-phase-lag delay: some exact solutions. Mech. Res. Commun., 36, 796-803, 2009.
  • [8] Y.Z. Povstenko. Thermoelasticity which uses fractional heat conduction equation. J. Math. Sci., 162, 296-305, 2009.
  • [9] Y.Z. Povstenko. Theory of thermoelasticity based on the space-time-fractional heat conduction equation. Phys. Scr. T, 136, 014017, (6 pp), 2009.
  • [10] J. Ignaczak, M. Ostoja-Starzewski. Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford 2010.
  • [11] Y.Z. Povstenko. Fractional Cattaneo-type equations and generalized thermoelasticity. J. Thermal Stresses, 34, 97-114, 2011.
  • [12] M.E. Gurtin, A.C. Pipkin. A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal., 31, 113-126, 1968.
  • [13] R.R. Nigmatullin. To the theoretical explanation of the “universal response". Phys. Stat. Sol. (b), 123, 739-745, 1984.
  • [14] R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi. Time fractional diffusion: a discrete random walk approach. Nonlinear Dynamics, 29, 129-143, 2002.
  • [15] S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam 1993.
  • [16] R. Gorenflo, F. Mainardi. Fractional calculus: integral and differential equations of fractional order. Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri, F. Mainardi (Eds.), pp. 223-276, Springer, New York 1997.
  • [17] I. Podlubny. Fractional Differential Equations. Academic Press, San Diego 1999.
  • [18] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1b2e11c-491c-43cb-b03e-7b9e4bb8466b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.