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Abstrat. The time-frational heat ondution equation with the Caputo derivative

of the order 0 < α < 2 is onsidered in a bounded domain. For this equation dif-

ferent types of boundary onditions an be given. The Dirihlet boundary ondition

presribes the temperature over the surfae of the body. In the ase of mathematial

Neumann boundary ondition the boundary values of the normal derivative are set,

the physial Neumann boundary ondition spei�es the boundary values of the heat

�ux. In the ase of the lassial heat ondution equation (α = 1), these two types

of boundary onditions are idential, but for frational heat ondution they are

essentially di�erent. The mathematial Robin boundary ondition is a spei�ation

of a linear ombination of the values of temperature and the values of its normal

derivative at the boundary of the domain, while the physial Robin boundary ondi-

tion presribes a linear ombination of the values of temperature and the values of

the heat �ux at the surfae of a body.

1. Introdution

The onventional theory of heat ondution is based on the lassial (loal)

Fourier law, whih relates the heat �ux vetor q to the temperature gradient

q = −k grad T, (1)
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where k is the thermal ondutivity of a solid. In ombination with a law of

onservation of energy,

ρC
∂T

∂t
= −divq (2)

with ρ being the mass density, C the spei� heat apaity, the Fourier law

leads to the paraboli heat ondution equation

∂T

∂t
= a∆T, (3)

where a is the thermal di�usivity oe�ient.

It should be noted that Eq. (1) is a phenomenologial law whih states the

proportionality of the �ux to the gradient of the transported quantity. It is

met in several physial phenomena with di�erent names.

For example, it is well known that from mathematial viewpoint the Fourier

law (1) in the theory of heat ondution and the Fik law in the theory of

di�usion,

J = −kc grad c, (4)

where J is the matter �ux, c is the onentration, kc is the di�usion ondu-

tivity, are idential. In ombination with the balane equation for mass,

ρ
∂c

∂t
= −divJ, (5)

the Fik law leads to the lassial di�usion equation

∂c

∂t
= ac ∆c. (6)

Here ac is the di�usivity oe�ient.

Similarly, the lassial empirial Dary law, desribing the �ow of �uid

through a porous medium, states proportionality between the �uid mass �ux

J and the gradient of the pore pressure p,

J = −kp grad p, (7)

and leads to the paraboli di�usion equation for the pressure

∂p

∂t
= ap ∆p. (8)

Though we will onsider heat ondution, it obvious that the disussion

onerns also di�usion as well as the theory of �uid �ow through the porous

solid.
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Nonlassial theories of heat ondution in whih the Fourier law and the

standard heat ondution equation are replaed by more general equations,

onstantly attrat the attention of the researhers. For an extensive biblio-

graphy on this subjet see [1�11℄ and referenes therein.

2. Nonloal generalizations of the Fourier law

For materials with time nonloality (with memory) the e�et at a point x at

time t depends on the histories of auses at a point x at all past and present

times. In the theory proposed by Gurtin and Pipkin [12℄ the law of heat

ondution is given by general time�nonloal dependene

q(t) = −k

∫

∞

0

K(u) grad T (t − u)du. (9)

Using substitution τ = t − u leads to the following equation

q(t) = −k

∫ t

−∞

K(t − τ) grad T (τ)dτ. (10)

Choosing 0 instead of −∞ as a �starting point�, we obtain

q(t) = −k

∫ t

0

K(t − τ) grad T (τ)dτ (11)

and the heat ondution equation with memory [13℄:

∂T

∂t
= a

∫ t

0

K(t − τ)∆T (τ)dτ. (12)

The time-nonloal dependenes between the heat �ux vetor and the tem-

perature gradient with the �long-tale� power kernel K(t − τ) were onsidered

in [5, 8, 9℄ (see also [14℄)

q(t) = −
k

Γ(α)

∂

∂t

∫ t

0

(t − τ)α−1 grad T (τ)dτ, 0 < α ≤ 1; (13)

q(t) = −
k

Γ(α − 1)

∫ t

0

(t − τ)α−2 gradT (τ)dτ, 1 < α ≤ 2, (14)

where Γ(α) is the gamma funtion. Equations (13) and (14) an be interpreted

in terms of frational integrals and derivatives

q(t) = −kD1−α
RL grad T (t), 0 < α ≤ 1; (15)
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q(t) = −kIα−1grad T (t), 1 < α ≤ 2, (16)

where Iαf(t) and Dα
RLf(t) are the Riemann�Liouville frational integral and

derivative of the order α, respetively [15�18℄:

Iαf(t) =
1

Γ(α)

∫ t

0

(t − τ)α−1f(τ)dτ, α > 0, (17)

Dα
RLf(t) =

dn

dtn

[

1

Γ(n − α)

∫ t

0

(t − τ)n−α−1f(τ)dτ

]

, n − 1 < α < n. (18)

The onstitutive equations (15) and (16) yield the time-frational heat

ondution equation

∂αT

∂tα
= a∆T, 0 < α ≤ 2, (19)

with the Caputo frational derivative of order 0 < α ≤ 2

dαf(t)

dtα
=

1

Γ(n − α)

∫ t

0

(t − τ)n−α−1
dnf(τ)

dτn
dτ, n − 1 < α < n. (20)

3. Boundary onditions

The Dirihlet boundary ondition (the boundary ondition of the �rst kind)

spei�es the temperature over the surfae of the body under onsideration

T
∣

∣

S
= g0(xS , t). (21)

For frational heat ondution equations, two types of Neumann boundary

ondition (the boundary ondition of the seond kind) an be onsidered: the

mathematial ondition with the presribed boundary value of the normal

derivative
∂T

∂n

∣

∣

∣

S
= G0(xS , t) (22)

and the physial ondition with the presribed boundary value of the heat �ux

D1−α
RL

∂T

∂n

∣

∣

∣

∣

∣

S

= G0(xS , t), 0 < α ≤ 1,

Iα−1
∂T

∂n

∣

∣

∣

∣

∣

S

= G0(xS , t), 1 < α ≤ 2.

(23)
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In the ase of the lassial heat ondution equation (α = 1), these two types

of boundary ondition are idential, but for frational heat ondution they are

essentially di�erent. Similarly, the mathematial Robin boundary ondition

(the boundary ondition of the third kind) is a spei�ation of a linear om-

bination of the values of temperature and the values of its normal derivative

at the boundary of the domain

(

c1T + c2

∂T

∂n

)

∣

∣

∣

∣

∣

S

= H0(xS , t) (24)

with some nonzero onstants c1 and c2, while the physial Robin boundary

ondition spei�es a linear ombination of the values of temperature and the

values of the heat �ux at the boundary of the domain. The ondition of onve-

tive heat exhange between a body and the environment with the temperature

Te leads to

(

hT + kD1−α
RL

∂T

∂n

)

∣

∣

∣

∣

∣

S

= hTe(xS , t), 0 < α ≤ 1,

(

hT + kIα−1
∂T

∂n

)

∣

∣

∣

∣

∣

S

= hTe(xS , t), 1 < α ≤ 2,

(25)

where h is the onvetive heat transfer oe�ient.
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