PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generalized utilization-based similarity coefficient for machine-part grouping problem in cellular manufacturing

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article intends to justify the gap in the research of similarity coefficient driven approaches and cell formation problems (CFP) based on ratio data in cellular manufacturing systems (CMS). The actual implication of ratio data was vaguely addressed in past literature, which has been corrected recently. This research considered that newly projected CFP based on ration data. This study further revealed the lack of interest of researchers in investigation for an appropriate and improved similarity coefficient primarily for CFP based on ratio data. For that matter a novel similarity coefficient named as Generalized Utilization-based Similarity Coefficient (GUSC) is introduced, which scientifically handles ratio data. Thereafter a two-stage cell formation technique is adopted. First, the proposed GUSC based method is employed to obtained efficient machine cells. Second, a novel part allocating heuristic is proposed to obtain effective part families. This proposed approach is successfully verified on the test problems and compared with algorithms based on another similarity coefficient and a recent metaheuristic. The proposed method is shown to obtain 66.67% improved solutions.
Twórcy
autor
  • Norwegian University of Science and Technology, Department of Manufacturing and Civil Engineering, Teknologivegen 22, 2815 Gjøvik, Norway
Bibliografia
  • [1] Wemmerlöv U., Hyer N.L., Research issues in cellular manufacturing, Int.J.Prod.Res.,25,3,413–431, 1987.
  • [2] Burbidge J.L., AIDA and group technology, Int. J. Prod. Res., 11, 4, 315–324, 1973.
  • [3] Selim H.M., Askin R.G., Vakharia A.J., Cell formation in group technology: review, evaluation and directions for future research, Comput. Ind. Eng., 34, 1, 3–20, 1998.
  • [4] King J.R., Machine-component grouping in production flow analysis: an approach using a rank orderclustering algorithm, Int. J. Prod. Res., 18, 2, 213– 232, 1980.
  • [5] Chandrasekaran M.P., Rajagopalan R., MODROC: an extension of rank order clustering for group technology, Int. J. Prod. Res., 24, 5, 1221–1233, 1986.
  • [6] Waghodekar P.H., Sahu S., Machine-component cell formation in group technology: MACE, Int. J. Prod. Res., 22, 6, 937–948, 1984.
  • [7] Mosier C.T., Taube L., Weighted similarity measure heuristics for the group technology machine clustering problem, Omega, 13, 6, 577–583, 1985.
  • [8] Ballakur A., Steudel H.J., A with-in cell utilization based heuristic for designing cellular manufacturing systems, Int. J. Prod. Res., 25, 5, 639–655, 1987.
  • [9] Srinivasan G., A clustering algorithm for machine cell formation in group technology using minimum spanning trees, Int. J. Prod. Res., 32, 9, 2149–2158, 1994.
  • [10] Kusiak A., The generalized group technology concept, Int. J. Prod. Res., 25, 4, 561–569, 1987.
  • [11] Rabbani M., Samavati M. Ziaee M.S., Rafiei H. Reconfigurable dynamic cellular manufacturing system: a new bi-objective mathematical model, RAIRO – Oper. Res., 48, 1, 75–102, 2014.
  • [12] McAuley J., Machine grouping for efficient production, Prod. Eng., 51, 2, 53–57, 1972.
  • [13] Seifoddini H., Wolfe P.M., Application of the similarity coefficient method in group technology, IIE Trans., 183, 3, 271–277, 1986.
  • [14] Papaioannou G., Wilson J.M., The evolution of cell formation problem methodologies based on recent studies (1997–2008): Review and directions for future research, Eur. J. Oper. Res., 206, 3, 509–521, 2010.
  • [15] Chattopadhyay M., Sengupta S., Ghosh T., Dan P.K., Mazumdar, S., Neuro-genetic impact on cell formation methods of Cellular Manufacturing System design: A quantitative review and analysis, Comput. Ind. Eng., 64, 1, 256–272, 2013.
  • [16] Seifoddini H., Single linkage versus average linkage clustering in machine cells formation applications, Comput. Ind. Eng., 16, 3, 419–426, 1989.
  • [17] Ghosh T., Martinsen K., Dan P.K., Data-Driven Beetle Antennae Search Algorithm for Electrical Power Modeling of a Combined Cycle Power Plant, [in:] Le T. H., Le H., Pham D.T. [Eds], Optimization of Complex Systems: Theory, Models, Algorithms and Applications, WCGO 2019, Advances in Intelligent Systems and Computing, Springer, 991, 906– 915, 2019.
  • [18] Yin Y., Application Similarity Coefficient Method to Cellular Manufacturing, In Manufacturing the Future, V. Kordic, A. Lazinica, M. Merdan [Eds], ISBN: 3-86611-198-3, InTech, 2006.
  • [19] Sarker B.R., The resemblance coefficients in group technology: a survey and comparative study of relational metrics, Comput. Ind. Eng., 30, 1, 103–116, 1996.
  • [20] Romesburg H.C., Cluster analysis for researchers. Lifetime Learning Publications, Wadsworth Inc., Belmont, 1984.
  • [21] Yin Y., Yasuda K., Similarity coefficient methods applied to the cell formation problem: a comparative investigation, Comput. Ind. Eng., 48, 3, 471–489, 2005.
  • [22] Carrie A.S., Numerical taxonomy applied to group technology and plant layout, Int. J. Prod. Res., 11, 4, 399–416, 1973.
  • [23] Rajagopalan R., Batra J.L., Design of cellular production system: a graph theoretic approach, Int. J. Prod. Res., 13, 6, 567–579, 1975.
  • [24] Chandrasekharan M.P., Rajagopalan R., ZODIAC: an algorithm for concurrent formation of part families and machine cells, Int. J. Prod. Res., 25, 6, 451–464, 1987.
  • [25] Steudel H.J., Ballakur A., A dynamic programming based heuristic for machine grouping in manufacturing cell formation, Comput. Ind. Eng., 12, 3, 215– 222, 1987.
  • [26] Mosier C.T., An experiment investigating the application of clustering procedures and similarity coefficients to the GT machine cell formation problem, Int. J. Prod. Res., 27, 10, 1811–1835, 1989.
  • [27] Srinivasan G., Narendran T.T., GRAFICS – a nonhierarchical clustering algorithm for group technology, Int. J. Prod. Res., 29, 3, 463–478, 1991.
  • [28] Kusiak A., Boe W.J., Cheng, C., Designing cellular manufacturing systems: branch-and-bound and A∗ approaches, IIE Trans., 25, 4, 46–56, 1993.
  • [29] Vakharia A.J., Wemmerl¨ov U., A comparative investigation of hierarchical clustering techniques and dissimilarity measures applied to the cell formation problem, J. Oper. Manag., 13, 2, 117–138, 1995.
  • [30] Nair G.J.K., Narendran T.T., CASE: A clustering algorithm for cell formation with sequence data, Int. J. Prod. Res., 36, 1, 157–179, 1998.
  • [31] Nair G.J.K., Narendran T.T., ACCORD: A bicriterion algorithm for cell formation using ordinal and ratio-level data, Int. J. Prod. Res., 37, 3, 539–556, 1999.
  • [32] Sarker B.R., Xu Y., Designing multi-product lines: job routing in cellular manufacturing systems, IIE Trans., 32, 3, 219–235, 2000.
  • [33] Dimopoulos C., Mort N., A hierarchical clustering methodology based on genetic programming for the solution of simple cell-formation problems, Int. J. Prod. Res., 39, 1, 1–19, 2001.
  • [34] Ilić O.R., An e-Learning tool considering similarity measures for manufacturing cell formation, J. Intell. Manuf., 25, 3, 617–628, 2014.
  • [35] Gupta T., Design of manufacturing cells for flexible environment considering alternative routing, Int. J. Prod. Res., 31, 6, 1259–1273. 1993.
  • [36] Seifoddini H., Djassemi M., Merits of the production volume based similarity coefficient in machine cell formation, J. Manuf. Syst., 14, 1, 35–44, 1995.
  • [37] Pachayappan M., Panneerselvam R., A Comparative Investigation of Similarity Coefficients Applied to the Cell Formation Problem using Hybrid Clustering Algorithms, Mater. Today: Proc., 5, 5, 12285–12302, 2018.
  • [38] Venugopal V., Narendran T.T., Cell formation in manufacturing systems through simulated annealing: An experimental evaluation, Eur. J. Oper. Res., 63, 3, 409–422, 1992.
  • [39] George A.P., Rajendran C., Ghosh, S., An analytical-iterative clustering algorithm for cell formation in cellular manufacturing systems with ordinal-level and ratio-level data, Int. J. Adv Manuf. Technol., 22, 1–2, 125–133, 2003.
  • [40] Zolfaghari S., Liang M., A new genetic algorithm for the machine/part grouping problem involving processing times and lot sizes, Comput. Ind. Eng., 45, 4, 713–731, 2003.
  • [41] Ponnambalam S.G., Pandian R.S., Mahapatra S.S., Saravansankar S., Cell formation with workload data in cellular manufacturing system using genetic algorithm, IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 2007.
  • [42] Mahapatra S.S., Pandian R.S., Genetic cell formation using ratio level data in cellular manufacturing systems, Int. J. Adv. Manuf. Technol., 38, 5–6, 630– 40, 2008.
  • [43] Sengupta S., Ghosh T., Dan P.K., FAKMCT: Fuzzy ART K-Means Clustering Technique: a hybrid neural network approach to cellular manufacturing systems, Int. J. Comput. Integr. Manuf., 24, 10, 927– 938, 2011.
  • [44] Wu N., A concurrent approach to cell formation and assignment of identical machines in group technology, Int. J. Prod. Res., 36, 8, 2099–2114, 1998.
  • [45] Anderberg M.R., Cluster Analysis for Applications, Academic Press Inc., New York, 1973.
  • [46] Ghosh T., Doloi B., Dan P.K., Utilization-based grouping efficiency and multi-criteria decision approach in designing of manufacturing cells, J. Eng. Manuf., 231, 3, 505–522, 2016.
  • [47] Ghosh T., Martinsen K., Dan P.K., Development and correlation analysis of non-dominated sorting buffalo optimization NSBUF II using Taguchi’s design coupled gray relational analysis and ANN, Appl. Soft Comput., 85, 105809, 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1b0c9a8-a09c-42aa-ba41-d91000fa40bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.