PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of waste generated from thermal transformation of municipal wate on selected properties of cement mortar

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article analyzes the possibility of using two types of waste from the thermal transformation of municipal waste in the production technology of cement mortars. Fly ash and dust were used in amounts of 5, 10, 15, 20, 25 and 30% of the cement mass as a replacement for sand. In total, 11 series of cement mortars were prepared: a standard control mortar and 10 series of mortars modified with individual waste. The following tests were performed for the prepared samples: bending and compressive strength after 7 and 28 days of maturing, water absorption and consistency testing for fresh mortars. Based on the results obtained, it can be concluded that the use of waste dust and fly ash in the amount of 30% as a replacement for sand reduces the compressive strength by 24.0% and 8.0%, respectively, and the bending strength by 23.6% and 21.5%, respectively.
Wydawca
Rocznik
Strony
142--150
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Faculty of Civil Engineering, Poland
Bibliografia
  • 1. Aggarwal, Y., Siddique, R., 2014. Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates, Construction and Building Materials, 54, 210-223.
  • 2. Czajkowska, A., Raczkiewicz, W., Ingaldi, M. 2023. Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies, Production Engineering Archives, 29(3), 288-297, DOI: 10.30657/pea.2023.29.33
  • 3. Cardoso, W., di Felice, R., Baptista, R.C., Machado, T.A.P., de Sousa Galdino, A.G., 2022. Evaluation of the use of blast furnace slag as an additive in mortars, REM, Int. Eng. J., Ouro Preto, 75(3), 215-224
  • 4. Dębska B., Krasoń J., Lichołai L., 2020. The evaluation of the possible utilization of waste glass in sustainable mortars, Construction of Optimized Energy Potential, vol. 9 (2), 7-15, DOI: 10.17512/bozpe.2020.2.01
  • 5. Francois, D., Criado, C., 2007. Monitoring of leachate at a test road using treated fly ash from municipal solid waste incinerator, Journal of Hazardous Materials, 2007, 543-549
  • 6. Gu, L., Ozbakkaloglu, T., 2016. Use of recycled plastics in concrete: A critical review, Waste Management., 51, 19-42
  • 7. Halicka, A., Ogrodnik, P., Zegardlo, B., 2013. Using ceramic sanitary ware waste as concrete aggregate, Construction and Building Materials, 48, 295-305
  • 8. Helbrych, P., 2019. Recycling of sulfur polymers derived from the purification process of copper and other non-ferrous metals in concrete composites, Construction of Optimized Energy Potential, 8(1), 131-136 DOI: 10.17512/bozpe.2019.1.14
  • 9. Jura, J., 2020. Influence of Type of Biomass Burned on the Properties of Cement Mortar Containing Fly Ash, Construction of Optimized Energy Potential, 9(1), 77-82
  • 10. Jura, J., Ulewicz, M., 2021. Assessment of the Possibility of Using Fly Ash from Biomass Combustion for Concrete, Materials, 14, 6708, DOI: 10.3390/ma14216708
  • 11. Jura, J., 2023. Influence of Waste Ashes from Biomass Combustion on Frost Resistance of Cement Mortars, Scientific Journals of the Maritime University of Szczecin, 75(147), 35-41
  • 12. Kalak, T., Szypura, P., Cierpiszewski, R., Ulewicz, M., 2023. Modification of Concrete Composition Doped by Sewage Sludge Fly Ash and Its Effect on Compressive Strength, Materials, 16, 4043, DOI: 10.3390/ma16114043
  • 13. Kalinowska-Wichrowska, K., Pawluczuk, E., Bołtryk, M., Jimenez, J.R., Fernandez-Rodriguez, J.M., Suescum Morales, D., 2022. The Performance of Concrete Made with Secondary Products-Recycled Coarse Aggregates, Recycled Cement Mortar, and Fly Ash-Slag Mix. Materials, 15, 1438.
  • 14. Martinez-Molina, W., Chavez-Garcia, H.L., Perez-Lopez, T., Alonso-Guzman, E.M., Arreola-Sanchez, M., Navarrete-Seras, M.A., Borrego-Perez, J.A., Sanchez-Calvillo, A., Guzman-Torres, J.A., Perez-Quiroz, J.T., 2021. Effect of the Addition of Agribusiness and Industrial Wastes as a Partial Substitution of Portland Cement for the Carbonation of Mortars. Materials, 14, 7276
  • 15. Muradyan, N.G., Arzumanyan, A.A., Kalantaryan, M.A., Vardanyan, Y.V., Yeranosyan, M., Ulewicz, M., Laroze, D., Barseghyan, M.G., 2023. The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method. Materials 2023, 16, 5516, DOI: 10.3390/ma16165516
  • 16. Pietrzak, A., 2019. The effect of ashes generated from the combustion of sewage sludge on the basic mechanical properties of concrete, Construction of Optimized Energy Potential, 8(1), 29-35, DOI: 10.17512/bozpe.2019.1.03
  • 17. Popławski, J., Lelusz, M., 2023. Assessment of Sieving as a Mean to Increase Utilization Rate of Biomass Fly Ash in Cement-Based Composites. Applied Sciences, 13, 1659.
  • 18. Popławski, J., 2020. Influence of biomass fly-ash blended with bituminous coal fly-ash on properties of concrete, Construction of Optimized Energy Potential, 9(1), 89-96, DOI: 10.17512/bozpe.2020.1.11
  • 19. Pribulov’a. A., Futas. P., Baricova, D., 2016. Processing and utilization of metallurgical slags, Production Engineering Archives, 11/2, 2-5
  • 20. PN-EN 197-1 Cement - część 1. Skład, wymagania i kryteria zgodności dotyczące cementów powszechnego użytku
  • 21. PN-EN 1015-3 Metody badań zapraw do murów
  • 22. PN-EN 196-1:2016-7 Metody badania cementu - Część 1: Oznaczanie wytrzymałości
  • 23. Rashad, A.M., 2016. A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials, International Journal of Sustainable Built Environment, 5, 46-82
  • 24. Sharma, R., Bansal, P.P., 2016. Use of different forms of waste plastic in concrete—A review, Journal of Cleaner Production, 112, 473-482
  • 25. Šadzevičius R., Gurskis V., Ramukevičius D., 2023. Research on the properties of concrete with hemp shives, Construction of Optimized Energy Potential (CoOEP), 12, 25-32, DOI: 10.17512/bozpe.2023.12.03
  • 26. Tavakoli, D., Hashempour, M., Heidari, A., 2018. Use of Waste Materials in Concrete: A review, Pertanika Journal of Science & Technology, 26, 499-522
  • 27. Ulewicz, M., Jura J., 2017. Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar, E3S Web of Conferences 18, DOI: 10.1051/e3sconf/20171801029.
  • 28. Ulewicz, M.; Halbiniak, J. Application of waste from utilitarian ceramics for production of cement mortar and concrete. Physicochem. Probl. Miner. Process. 2016, 52, 1002-1010.
  • 29. Ulewicz, M., Pietrzak, A., 2021. Properties and Structure of Concretes Doped with Production Waste of Thermoplastic Elastomers from the Production of Car Floor Mats, Materials, 14, 872
  • 30. Ulewicz, M., Pietrzak, A., 2023. Influence of Post-Consumer Waste Thermoplastic Elastomers Obtained from Used Car Floor Mats on Concrete Properties, Materials, 16, 2231
  • 31. Walczak, P., Małolepszy, J., Reben, M., Rzepa, K., 2015. Mechanical properties of concrete mortar based on mixture of CRT glass cullet and fluidized fly ash, Procedia Engineering, 108, 453-458
  • 32. Wielgosiński G., Wasiak D., 2015. Wtórne odpady z procesu spalania odpadów, Nowa Energia, 45-56.
  • 33. Wielgosiński G., 2016. Termiczne przekształcanie odpadów komunalnych - wybrane zagadnienia, Wydawnictwo „Nowa Energia”, Racibórz
  • 34.https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-w-2022-roku,12,6.html
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1afc0ac-9187-4da1-a564-bd779bfa75be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.