PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Edge element calculation of radar cross section of small maritime targets with respect to height of radar antenna

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
From the aspect of navigational safety and collision avoidance it is very important to be able to detect small maritime targets such as buoys and small boats. Ship's radar is supposed to detect these types of targets, however the ability of radar to detect such targets depends on several factors. The most important factors affecting the detection probability of small maritime targets are height of the antenna installation on the ship and radar cross section of the target. The methods of computation radar cross section are diverse and complicated, however, in this paper we apply our previously published numerical method for the RCS computation which had proven to be very accurate. Physically to find RCS of the target one has to find the solution of electromagnetic scattering problem. The numerical method relies on the combination of finite edge volume elements and finite edge boundary elements to obtain the solution of Maxwell equations. The radiation pattern of ships radar antenna is the source of excitation for the numerical method. At the end of the paper the RCS of small maritime targets as the function of antenna height is shown. These results can be used as a parameter in radar design, as well as the guideline for the height of installation of the ship's radar antenna above the sea.
Twórcy
autor
  • University of Split, Split, Croatia
autor
  • University of Split, Split, Croatia
autor
  • University of Split, Split, Croatia
autor
  • University of Zagreb, Zagreb, Croatia
Bibliografia
  • 1. Liu J., Fang N., Wang B. & Zhang L. 2012. An efficient raytracing method for RCS prediction in GRECO, Microw. Opt. Technol. Lett. 55(3): 586–589.
  • 2. Taflove A. & Hagness S. C. 2005. Computational Electrodynamics, Boston: Artech House Inc.
  • 3. Dodig, H., Poljak D. & Peratta A. 2012. Hybrid BEM/FEM edge element computation of the thermal rise in the 3D model of the human eye induced by high frequency EM waves, Proc. of SOFTCOM 2012
  • 4. Dodig, H., Lalléchère S., Bonnet P., Poljak. D. & Khamlichi El. 2014. Stochastic sensitivity of the electromagnetic distributions inside a human eye modeled with a 3D hybrid BEM/FEM edge element method, Eng. Anal. Bound. Elem. 49: 48–62.
  • 5. Dodig, H. 2017. A boundary integral method for numerical computation of radar cross section of 3D targets using hybrid BEM/FEM with edge elements, J. Comput. Phys. 348: 790–802.
  • 6. Stratton J. & Chu L.J. 1939, Diffraction theory of electromagnetic waves, Phys. Rev. 56: 99-107.
  • 7. Nedelec J.C. 1980. Mixed finite elements in R3, Numer. Math. 35: 315-341
  • 8. Cvetković M., Dodig H. & Poljak D. 2017. A Study on the use of compound and extracted models in the high frequency electromagnetic exposure assessment, Math. Probl. Eng., open access, online, Volume 2017, Article ID 7932604.
  • 9. Talley L.D., Pickard G.L., Emery W.J. & Swift J.H. 2011. Descriptive physical oceanography, New York: Elsevier.
  • 10. Garazza A.R.L, Sorichetti P., Marzocca A.J. & Monti G.A. 2011. Influence of the microstructure of vulcanized polybutadiene rubber on the dielectric properties. Polym. Test. 30:657-662
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1af6b2c-a2d9-4462-86c1-3fbd5017fc3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.