PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement security and camouflage for free-space optical communication system reliance on switching between structured light beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This novel study uses structured light beams to enhance security and camouflage in free-space optical (FSO) communication systems. The system employs Bessel, Airy, and Vortex beams due to their properties, such as their unique shapes, adaptability to changing environmental conditions, and spread over long distances while keeping data portable. The structured light beams are dynamically switched during transmission to integrity and security over varying propagation distances and atmospheric conditions. In weak and moderate weather conditions, all three structured light beams can propagate up to 5 km while preserving data integrity. However, under stronger turbulence, the Bessel and Vortex beams can extend beyond 3 km, whereas the Airy beam is limited to a maximum distance of 2 km. The system multi-layered security approach includes beam shaping and selective switching between structured light beams to provide camouflage and enhance data protection, ensuring secure and reliable optical communication even in challenging environments. Simulations using the OptiSystem 18 program demonstrate the system robustness and effectiveness in a high-speed FSO communication.
Rocznik
Strony
art. no. e152684
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
  • Department of Laser and Optoelectronics, Collage of Engineering, Al-Nahrain University, Jadriyah, Baghdad, Iraq
  • Department of Laser and Optoelectronics, Collage of Engineering, Al-Nahrain University, Jadriyah, Baghdad, Iraq
Bibliografia
  • [1] Babani, S., Abdulmalik, Y. S., Abdul’aziz, A., Loko, A. Z. & Gajibo, M. M. Free space optical communication: The main challenges and its possible solution. Int. J. Sci. Eng. Res. 5, 1-8 (2014). https://www.ijser.org/onlineResearchPaperViewer.aspx?Free-Space-Optical-Communication-The-Main-Challenges-and-Its-Possible-Solution.pdf.
  • [2] Al-Gailani, S. A. et al. A survey of free space optics (FSO) communication systems, links, and networks. IEEE Access 9, 7353-7368 (2021). https://doi.org/10.1109/ACCESS.2020.3048049.
  • [3] Verma, N. K. & Narayan, H. Analysis of free-space optical system under different atmospheric channels. Int. Res. J. Eng. Technol. 4, 80-83 (2017). https://www.irjet.net/archives/V4/i7/IRJET-V4I715.pdf.
  • [4] Endo, H. et al. Free-space optical channel estimation for physical layer security. Opt. Express 24, 8940-8952 (2016). https://doi.org/10.1364/OE.24.008940.
  • [5] Ikeda, K., Sato, Y., Koyama, O. & Yamada, M. Two-dimensional encryption system for secure free-space optical communication of time-series data streams. Electron. Lett. 55, 752-754 (2019). https://doi.org/10.1049/el.2019.0899.
  • [6] Trinh, P. V. et al. Design and security analysis of quantum key distribution protocol over free-space optics using the dual-threshold direct-detection receiver. IEEE Access 6, 4159-4175 (2018). https://doi.org/10.1109/ACCESS.2018.2800291.
  • [7] Deng, P., Kane, T., Yuan, X., Wang, M. & Xia, W. Free Space Optical Communication Networks. in Proc. IARIA SPACOMM 2018: The Tenth International Conference on Advances in Satellite and Space Communications 340-352 (SPACOMM, 2018).
  • [8] Martínez, N., Rodríguez-Ramos, L. F. & Sodnik, Z. Toward the uplink correction: Application of adaptive optics techniques on free-space optical communications through the atmosphere. Opt. Eng. 57, 076106 (2018). https://doi.org/10.1117/1.OE.57.7.076106.
  • [9] Wang, J. & Liang, Y. Generation and detection of structured light: A review. Front. Phys. 9, 688284 (2021). https://doi.org/10.3389/fphy.2021.688284.
  • [10] US Department of Energy. Dickey, F. M., Weichman, L. S. & Shagam, R. N. Laser Beam Shaping Techniques. (2000). https://www.osti.gov/biblio/752659.
  • [11] Amhoud, E. M., Trichili, A., Ooi, B. S. & Alouini, M.-S. OAM mode selection and space-time coding for atmospheric turbulence mitigation in FSO communication. IEEE Access 7, 88049-88057 (2019). https://doi.org/10.1109/ACCESS.2019.2925680.
  • [12] Li, S. et al. Experimental demonstration of free-space optical communications using orbital angular momentum (OAM) array encoding/decoding. in CLEO: Science and Innovations JTh2A.67 (Optica Publishing Group, 2015). https://doi.org/10.1364/CLEO_AT.2015.JTh2A.67.
  • [13] Ding, J., Wang, C. I. J., Yang, H. & Wang, L. Multiple optical beam switching for physical layer security of visible light communications. IEEE Photonics J. 14, 7306209 (2022). https://doi.org/10.1109/JPHOT.2021.3136233.
  • [14] Yang, Y., Cao, L. & Forbes, A. A review of liquid crystal spatial light modulators: devices and applications. Opto-Electron. Sci. 2, 230026 (2023). https://doi.org/10.29026/oes.2023.230026.
  • [15] Li, R. & Cao, L. Progress in phase calibration for liquid crystal spatial light modulators. Appl. Sci. 9, 2012 (2019). https://doi.org/10.3390/app9102012.
  • [16] Andrews, L. C. & Beason, M. Laser Beam Propagation through Random Media. Second Edition. (SPIE, 2005). https://doi.org/10.1117/3.626196.
  • [17] Rosales-Guzmán, C. & Forbes, A. How to Shape Light with Spatial Light Modulators. (SPIE, 2017). https://doi.org/10.1117/3.2281295.
  • [18] Nelson, W., Palastro, J. P., Davis, C. C. & Sprangle, P. Propagation of Bessel and Airy beams through atmospheric turbulence. J. Opt. Soc. Am. A 31, 603-609 (2014). https://doi.org/10.1364/JOSAA.31.000603.
  • [19] Hu, Y. et al. Self-accelerating Airy Beams: Generation, Control, and Applications. in Nonlinear Photonics and Novel Optical Phenomena (Eds. Morandotti, R. & Chen, Z.) 1-45 (Springer, 2012). https://doi.org/10.1007/978-1-4614-3538-9_1.
  • [20] Kivshar, Y. S. & Ostrovskaya, E. A. Optical vortices folding and twisting waves of light. Opt. Photon. News 4, 24-28 (2001). https://doi.org/10.1364/OPN.12.4.000024.
  • [21] Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019). https://doi.org/10.1038/s41377-019-0194-2.
  • [22] Trichili, A. et al. Detection of Bessel beams with digital axicons. Opt. Express 22, 17553-17560 (2014). https://doi.org/10.1364/OE.22.017553.
  • [23] Sri, M. S. & Ramana, A. V. Free space optical communication. Int. J. Mod. Trends Sci. Technol. 5, 80-83 (2017). https://www.ijmtst.com/vol3issue5/290IJMTST030530.pdf.
  • [24] Shaina & Gupta, A. Comparative analysis of free space optical communication system for various optical transmission windows under adverse weather conditions. Procedia Comput. Sci. 89, 99-106 (2016). https://doi.org/10.1016/j.procs.2016.06.014.
  • [25] Alkholidi, A. G. & Altowij, K. S. Free Space Optical Communications-Theory and Practices. in Contemporary Issues in Wireless Communications (ed. Khatib, M) 160-193 (IntechOpen, 2014). https://doi.org/10.5772/58884.
  • [26] Khonina, S. N., Kazanskiy, N. L., Karpeev, S. V. & Butt, M. A. Bessel beam: significance and applications-a progressive review. Micromachines 11, 997 (2020). https://doi.org/10.3390/mi11110997.
  • [27] Carvalho, M. I. & Facão, M. Propagation of Airy-related beams. Opt. Express 18, 21938-21949 (2010). https://doi.org/10.1364/OE.18.021938.
  • [28] Zhu, L., Wang, A. & Wang, J. Free-space data-carrying bendable light communications. Sci. Rep. 9, 14969 (2019). https://doi.org/10.1038/s41598-019-51496-z.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1acba6c-b8cb-4d7d-a03d-b408f9cd8787
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.