PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bio-dielectric based on superconductors yttrium calcium barium copper oxide (YCaBa2Cu3O7−x) from eggshell as calcium oxide source via sol-gel process

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Eggshell is a rich source of calcium that is a dielectric material used for doping in a superconductor. Yttrium calcium barium copper oxide (YxCa1−xBa2Cu3O7) was prepared using the sol-gel process and fired at 900 °C or 1,000 °C. The stoichiometric ratio of the raw materials Y2O3:BaCl2:CuO:CaO was 1:2:3:1 based on the molar mass. The obtained YCaBCO had an orthorhombic crystal structure composed of distorted oxygen-deficient perovskite. The orthorhombic structure was unsymmetrical, providing a substantial increase in the physical electromagnetic properties of the superconductor. The YBCO-900-reference analyzed using an impedance analyzer in the range from 500 Hz to (1 × 106) Hz and at room temperature (27 °C) had the following values for capacitance, electrical conductivity, and dielectric constant ± standard error: 8,286.70 ± 28.49 pF, (3.60 ± 0.01) × 107 S/m, and 1,874.794 ± 6.446, respectively. The YCaBCO-900-eggshell (YxCa1−xBa2Cu3O7) analyzed at 500 Hz at room temperature (27 °C) had high values for capacitance, electrical conductivity, and dielectric constant, namely, 8,540.10 ± 2.00 pF, (1.32 ± 0.00) × 108 S/m, and 1,988.540 ± 0.500, respectively. Furthermore, the YCaBCO-900-eggshell had electrical properties (capacitance, conductivity, and dielectric constant values) higher than those of YCaBCO-900-commercial grade measured under the same conditions. The YCaBCO-900-com grade had capacitance of 8,225.75 ± 0.73 pF, electrical conductivity of (1.40 ± 0.01) × 108 S/m, and dielectric constant of 1,874.59 ± 0.17, respectively. Therefore, eggshell is an alternative dielectric material useful for doping in yttrium barium copper oxide (YBCO) to form YCaBCO, thus causing an increase in its electrical properties. The obtained superconductor is a candidate that could be applied in many industries.
Wydawca
Rocznik
Strony
305--318
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
  • Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
  • Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
Bibliografia
  • [1] Tangboriboon N, Khongnakhon T, Kittikul S, Kunanuraksapong R, Sirivat A. An innovative CaSiO3 dielectric material from eggshells by sol–gel process. J Sol-Gel Sci Technol. 2011;58:33–41.
  • [2] Parande G, Manakari V, Dev Sharma Kopparthy S, Gupta M. A study on the effect of low-cost eggshell reinforcement on the immersion, damping and mechanical properties of magnesium–zinc alloy. Compos B Eng. 2020;182:107650.
  • [3] Tangboriboon N, Suttiprapar J, Changkhamchom S, Sirivat A. Alternative green preparation of meso-porous calcium hydroxyapatite by chemical reaction of eggshell and phophoric acid. Int J Appl Ceram Technol. 2019;16(5):1989–97.
  • [4] Oladele IO, Agbabiaka OG, Adediran AA, Akinwekomi AD, Balogun AO. Structural performance of poultry eggshell derived hydroxyapatite based high density polyethylene bio-composites. Heliyon. 2019;5:e 02552.
  • [5] Boronat T, Fombuena V, Garcia-Sanoguera D, Sanchez-Nacher L, Balart R. Development of a biocomposite based on green polyethylene biopolymer and eggshell. Mater Des. 2015;68:177–185.
  • [6] Tangboriboon N, Kunanuruksapong R, Sirivat A, Kunanuruksapong R, Sirivat A. Preparation and properties of calcium oxide from eggshells via calcination. Mater Sci Pol. 2012;30(4):313–22.
  • [7] Waheed M, Butt MS, Shehzad A, Adzahan NM, Shabbir MA, Suleria HAR, et al. Eggshell calcium: A cheap alternative to expensive supplements. Trends Food Sci Technol. 2019;91:219–30.
  • [8] Huang X, Dong K, Liu L, Luo X, Yang R, Song H, et al. Physicochemical and structural characteristics of nano eggshell calcium prepared by wet ball milling. LWT-Food Sci Technol. 2020;131:109721.
  • [9] Ehrenfeld JR. Eco-efficiency: Philosophy, theory and tools. J Ind Ecol. 2005;9(4):6–8.
  • [10] Basuki B. Eco-efficiency and sustainable development as efforts to produce environmentally friendly product: An exploratory case study. Soc Environ Account J. 2015;9(3):199–218.
  • [11] Cappuyns V. European Environment Agency (EEA), Making sustainability accountable: Eco-efficiency, resource productivity and innovation, Proceedings of a workshop on the occasion of the Fifth Anniversary of the European Environment Agency (EEA), Denmark, 39 p; 1998.
  • [12] Mohan R, Singh K, Kaur NJ, Bhattacharya S, Dixit M, Gaur NK, et al. Calcium and oxygen doping in YBa2Cu3Oy. Solid State Commun. 2007;141:605–9.
  • [13] Yao X, Huang DX, Nomura K, Nakamura Y, Izumi T, Shiohara Y. Superconducting properties of Ca-doped YBCO thick film by liquid phase epitaxy. Physica C. 2002;378–381:107–11.
  • [14] Jasim SE, Jusoh MA, Hafiz M, Jose R. Fabrication of superconducting YBCO nanoparticles by electrospinning. Procedia Eng. 2016;148:243–8.
  • [15] Hammerl G, Schmehl A, Schulz RR, Goetz B, Bielefeldt H, Schneider CW, et al. Enhanced supercurrent density in polycrystalline YBa2Cu3O7−δ at 77 K from calcium doping of grain boundaries. J Mannhart Nat. 2000;407:162–4.
  • [16] Haider MJ, Jasim KA. Effect of Composition and Dielectric Properties for (YBCO) superconductor compound in different preparation methods. J Pure Appl Sci. 2020;33(1):17–30.
  • [17] Ayaş AO, Ekieibil A, Çetin SK, Coşkun A, Osman Er, A, Ufuktepe Y. The structural, superconducting and transport properties of the compounds Y3Ba5Cu8O18 and Y3Ba5Ca2Cu8O18. J Supercond Nov Magn. 2011;24:2243–52.
  • [18] Amoudeh Z, Jalali T, Osfouri S. Fabrication and characterization of YCa2Cu3O7 superconductors using natural (CaCO3) nanoparticles extracted from Sepia osfouri. Appl Phys A. 2020;126:1–7.
  • [19] Harabor A, Rotaru P, Harabor NA, Nozar P, Rotaru A. Orthorhombic YBCO-123 ceramic oxide superconductor: Structural, resistive and thermal properties. Ceram Int. 2019;45:2899–907.
  • [20] Ochsenkühn-Petropulu M, Tarantilis P, Argyropulu R, Parissakis G. Optimization of the sintering process by DSC for the preparation of high-temperature superconductors. J Therm Anal. 1998;52:903–914.
  • [21] Thuy TT, Herman G, Lommens P, Driessche IV. Complexation behavior in aqueous EDTA sol-gel systems for the synthesis of YBa2Cu3O7−x high-temperature super-conductors. J Braz Chem Soc. 2012;23(7):1289–1297.
  • [22] Ozabaci M. Contrasting effects of metal oxide dopants on the superconductivity of YBa2Cu3O7−δ. J Mater Sci Mater Electron. 2019;30:20198–204.
  • [23] Hamadneh I, Alhayek H, Al-Mobydeen A, Jaber AA, Albuqain R, Alsotari S, et al. Green synthesis and characterization of yttrium oxide and barium carbonate nanoparticles using Azadirachta indica (the neem tree) fruit aqueous extract. Egypt J Chem. 2019;62(4):573–81.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1ab2575-c602-4ec9-841c-b01e6a028f51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.