PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Titanium(IV) Oxide Modified with Activated Carbon and Ultrasounds for Caffeine Photodegradation: Adsorption Isotherm and Kinetics Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the adsorption and photodegradation of caffeine (CAF) using modified photocatalysts were studied. The laboratory synthesis method of commercial titanium(IV) oxide, activated carbon and ultrasound was proposed. The adsorption effect of caffeine was described by the Langmuir and Freundlich isotherms. The effectiveness of CAF photocatalytic decomposition was evaluated as well as the parameters of the pseudo-first-order and pseudo-second-order reaction kinetics were estimated. It was determined that the caffeine adsorption fit both the Langmuir and Freundlich isotherms. The value of the experimental maximum adsorption capacity (qe) was the highest for TiO2 modified with activated carbon and ultrasounds (TiO2/AC/Us). The highest removal degree (over 99.0%) of CAF was observed for titanium(IV) oxide modified with activated carbon. Both photodegradation kinetics models show good or very good fit; however, the pseudo-first-order model shows better fit to the experimental data (R2 = 97–99%). After 20 minutes of the photodegradation process, the following efficiency order was determined: TiO2 < TiO2/AC < TiO2/AC/US. The results indicate that the combination of TiO2, activated carbon and ultrasound is an interesting alternative for the efficient degradation of caffeine, comparing to commercial TiO2.
Rocznik
Strony
137--145
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Water Protection, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
autor
  • Institute of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
  • Institute of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • 1. Ambati R., Gogate P.R. 2018. Ultrasound Assisted Synthesis of Iron Doped TiO2 Catalyst. Ultrasonics Sonochemistry, 40, Part A, 91–100. https://doi. org/10.1016/j.ultsonch.2017.07.002
  • 2. Armenise S., Garcia-Bordeje E., Valverde J.L., Romeo E., Monzon A. 2013. A Langmuir-Hinshelwood approach to the kinetic modelling of catalytic ammonia decomposition in an integral reactor. Physical Chemistry Chemical Physics, 15, 12104–12117. https://doi.org/10.1039/C3CP50715G
  • 3. Asenjo N.G., Santamaria R., Blanco C., Granda M., Alvarez P., Menendez R. 2013. Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon, 55, 62–69, https://doi.org/10.1016/j.carbon.2012.12.010
  • 4. Ayawei N. 2017. Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017, 3039817. https://doi.org/10.1155/2017/3039817
  • 5. Bel Hadjltaief H., Omri A., Zina M.B., Da Costa P., Galvez M.E. 2016. Titanium dioxide supported on different porous materials as photocatalyst for the degradation of methyl green in wastewaters. Advances in Materials Science and Engineering, 2015, 759853, 1–10. http://dx.doi.org/10.1155/2015/759853
  • 6. Bulychev N.A. 2019. Surface modification of titanium dioxide under ultrasonic treatment. International Journal of Recent Technology and Engineering, 8(4), 4137–4140. https://doi.org/10.35940/ijrte.C5900.118419
  • 7. Chu K.H., Al-Hamadani Y.A.J., Park C.M., Lee G., Jang M., Jang A., Her N., Son A., Yoon Y. 2017. Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: a review. Chemical Engineering Journal, 327, 629–647. https://doi.org/10.1016/j.cej.2017.06.137
  • 8. Covinich L., Felissia F., Massa P., Fenoglio R., Area M.C. 2018. Kinetic modeling of a heterogeneous Fenton-type oxidative treatment of complex industrial effluent. International Journal of Industrial Chemistry, 9, 215–229. https://doi.org/10.1007/s40090–018–0151–6
  • 9. Deng Y., Zhao R. 2015. Advanced oxidation processes (AOPs) in wastewater treatment. Water Pollution, 1, 167–176. https://doi.org/10.1007/s40726–015–0015-z
  • 10. Ghosh M., Manoli K., Shen X., Wang J., Ray A.K. 2019. Solar photocatalytic degradation of caffeine with dioxide and zinc oxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 377, 1–7. ttps://doi.org/10.1016/j.jphotochem.2019.03.029
  • 11. Giannakoudakis D.A., Farahmand N., Łomot D., Sobczak K., Bandosz T.J., Colmenares J.C. 2020. Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors. Chemical Engineering Journal, 395, 125099. https://doi.org/10.1016/j.cej.2020.125099
  • 12. Giles C.H., MacEwan T.H., Nakhwa S.N., Smith D. 1960. Studies in adsorption. Part XI A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, Journal of the Chemical Society, 0, 111, 3973–3993. https://doi.org/10.1039/JR9600003973
  • 13. Hunge, Y.M., Yadav A.A., Dhodamani A.G., Suzuki N., Terashima C., Fujishima A., Mathe V.L. 2020. Enhanced photocatalytic performance of ultrasound treated GO/TiO2 composite for photocatalytic degradation of salicylic acid under sunlight illumination. Ultrasonics Sonochemistry, 61, 104849. https://doi.org/10.1016/j.ultsonch.2019.104849
  • 14. Jafari S., Yahyaei B., Kusiak-Nejman E., Sillanpaa M. 2016. The influence of carbonization temperature on the modification of TiO2 in the removal of methyl orange from aqueous solution by adsorption. Desalination and Water Treatment, 57, 18825–18835. https://doi.org/10.1080/19443994.2015.1094678
  • 15. Janus M., Kusiak-Nejman E., Morawski A.W. 2011. Determination of the photocatalytic activity of TiO2 with high adsorption capacity. Reaction Kinetics, Mechanisms and Catalysis, 103, 279–288. https://doi.org/10.1007/s11144–011–0326-z
  • 16. Khani Z., Schieppati D., Bianchi C.L., Boffito D.C. 2019. The Sonophotocatalytic Degradation of Pharmaceuticals in Water by MnOx-TiO2 Systems with Tuned Band-Gaps. Catalysts, 9, 949. https://doi.org/10.3390/catal9110949
  • 17. Lee J.Y., Jo W.K., 2017. Application of ultrasoundaided method for the synthesis of CdS-incorporated three-dimensional TiO2 photocatalysts with enhanced performance. Ultrasonics Sonochemistry, 35(A), 440–448. https://doi.org/10.1016/j.ultsonch.2016.10.023
  • 18. Li Q., Pan F., Li W., Li D., Xu H., Xia D., Li A. 2018. Enhanced Adsorption of Bisphenol A from Aqueous Solution with 2-Vinylpyridine Functionalized Magnetic Nanoparticles. Polymers, 10, 1136. https://doi.org/10.3390/polym10101136
  • 19. Marcinkowski D., Wałęsa-Chorab M., Patroniak V., Kubicki M., Kądziołka G., Michalkiewicz B. 2014. A New polymeric complex of silver(I) with a hybryd pyrazine-bipyridine ligand – synthesis, crystal structure and its photocatalytic activity. New Journal of Chemistry, 38, 604–610. https://doi.org/10.1039/c3nj01187a
  • 20. Pereira L.O., Sales I.M., Zampiere L.P., Vieira S.S., Guimaraes I.R., Magalhaes F. 2019. Preparation of magnetic photocatalysts from TiO2, activated carbon and iron nitrate for environmental remediation. Journal of Photochemistry and Photobiology A: Chemistry, 382, 111907. https://doi.org/10.1016/j.jphotochem.2019.111907
  • 21. Prasad K., Pinjari D.V., Pandit A.B., Mhaske S.T. 2011. Synthesis of zirconium dioxide by ultrasound assisted precipitation: effect of calcination temperature. Ultrasonics Sonochemistry, 18(5), 1128–1137. https://doi.org/10.1016/j.ultsonch.2011.03.001
  • 22. Rodriguez R.Z., Granek E.F., Sylvester S. 2012. Occurrence and concentration of caffeine in Oregon coastal waters. Marine Pollution Bulletin, 64(7), 1417–1424. https://doi.org/10.1016/j.marpolbul.2012.04.015
  • 23. Sacco O., Sannino D., Matarangolo M., Vaiano V. 2019. Room temperature synthesis of V-Doped TiO2 and its photocatalytic activity in the removal of caffeine under UV Irradiation. Materials, 12(911), 1–10. https://doi.org/10.3390/ma12060911
  • 24. Shirsath S.R., Pinjari D.V., Gogate P.R., Sonawane S.H., Pandit A.B. 2013. Ultrasound assisted synthesis of doped TiO2 nano-particles: characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent. Ultrasonics Sonochemistry, 20, 277–286. https://doi.org/10.1016/j.ultsonch.2012.05.015
  • 25. Sing K.S.W. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure & Appl. Chem., 57, 4, 603–619. https://doi.org/10.1351/pac198557040603
  • 26. Stucchi M., Bianchi C.L., Argirusis C., Pifferi V., Neppolian B., Cerrato G., Boffito D.C. 2018. Ultrasound Assisted Synthesis of Ag-Decorated TiO2 Active in Visible Light. Ultrasonics Sonochemistry, 40, 282–288. https://doi.org/10.1016/j.ultsonch.2017.07.016
  • 27. Turnbull D., Rodricks J.V., Mariano G.F., Chowdhury F. 2017. Caffeine and cardiovascular health. Regulatory Toxicology and Pharmacology, 89, 165–185, https://doi.org/10.1016/j.yrtph.2017.07.025
  • 28. Wang L., Guo J., Dang J., Huang X., Chen S.S., Guan W. 2018. Comparison of the photocatalytic performance of TiO2/AC and TiO2/CNT nanocomposites for methyl orange photodegradation. Water Science & Technology, 78(5–6), 1082–1093. https://doi.org/10.2166/wst.2018.374
  • 29. Xing B., Shi C., Zhang C., Yi G., Chen L., Guo H., Huang G., Cao J. 2016. Preparation of AC/TiO2 composites from activated carbon modified by HNO3 and their photocatalytic activity. Journal of Nanomaterials, 2016(1–10), https://doi.org/10.1155/2016/8393648
  • 30. Zawadzki, P. 2020. TiO2 modified with organic acids for the decomposition of chlorfenvinphos under the influence of visible light: activity, performance, adsorption, and kinetics. Materials, 13(2), 289. https://doi.org/10.3390/ma13020289
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1a7c27f-2047-4cda-9779-1a1b24bde4de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.