PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Liquid-liquid two phase-system stabilized by tween 40 and 80 surfactants: multiparametric study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to investigate the impact of process parameters such as interfacial tension, type of surfactants, and their concentration on simple oil-in-water dispersion. Explored systems were prepared with 5% liquid paraffin oil and aqueous phase with emulsifiers Tween 40 of concentrations from 0.008325 mM to 0.025 mM and Tween 80 with concentrations ranging from 0.00375 mM to 0.011 mM. All systems were characterized in terms of their density and interfacial tension. In the next step analysis of droplet size distributions and mean droplet diameter was performed. The results showed that the size of paraffin droplets decreased as the concentration of surfactants grew. This trend is accompanied by decrease in the interfacial tension between phases. The correlation between mean drop size and the energy input and physical properties of both liquids was developed. The last step provides scientific evidence for the formulation of stable droplets of liquid paraffin.
Rocznik
Strony
51--63
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wz.
Twórcy
  • West Pomeranian University of Technology in Szczecin Szczecin, Poland
  • National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute“ Kyiv, Ukraine
Bibliografia
  • 1. McClements, D.J. (2010). Emulsion design to improve the delivery of functional lipophilic components. Annu. Rev. Food Sci. Technol. 1(1), 241–269. DOI:10.1146/annurev.food.080708.100722
  • 2. Okochi, H. & Nakano, M. (2000). Preparation and evaluation of w/o/w type emulsions containing vancomycin. Adv. Drug Deliv. Rev. 45(1), 5–26. DOI: 10.1016/S0169-409X(00)00097-1.
  • 3. Lee, J.S., Kim, J.W., Han, S.H., Chang, I.S., Kang, H.H., Lee, O.S., Oh, S.G. & Suh, K.D. (2004).The stabilization of L-ascorbic acid in aqueous solution and water-in-oil-in-water double emulsion by controlling pH and electrolyte concentration. Int. J. Cosmet. Sci. 26(4), 217–217. DOI: 10.1111/j.0142-5463.2004.00223_1.x.
  • 4. Schramm, L.L. (1992). Petroleum Emulsion. In L.L. Schramm (Ed.), Emulsions fundamentals and applications in the petroleum industry (pp. 1–51). Washignton: American Chemical Society
  • 5. McClements, D.J. (2015). Food Emulsions: principles, practices, and techniques (3rd ed), Boca Raton: CRC Press
  • 6. McClements, D.J. & Jafari, S.M. (2018). Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 251, 55–79. DOI: 10.1016/j.cis.2017.12.001.
  • 7. Rosen, M.J. & Kunjappu, J.T. (2012). Surfactants and Interfacial Phenomena(4th ed). Hoboken, New Jersey: John Wiley & Sons, Inc.
  • 8. Kharat, M., Zhang, G. & McClements, D.J. (2018). Stability of curcumin in oil-in-water emulsions: Impact of emulsifier type and concentration on chemical degradation. Food Res. Int. 111, 178–186. DOI: 10.1016/j.foodres.2018.05.021.
  • 9. Eastwood, C.D., Armi, L. & Lasheras, J.C. (2004).The breakup of immiscible fluids in turbulent flows. J. Fluid Mech. 502, 309–333. DOI: 10.1017/S0022112003007730.
  • 10. Maaß, S., Paul, N. & Kraume, M. (2012). Influence of the dispersed phase fraction on experimental and predicted drop size distributions in breakage dominated stirred systems. Chem. Eng. Sci. 76, 140–153. DOI: 10.1016/j.ces.2012.03.050.
  • 11. Abbas, S., Hayat, K., Karangwa, E., Bashari, M. & Zhang, X. (2013). An overview of ultrasound-assisted food-grade nanoemulsions. Food Eng. Rev. 5, 139–157. DOI: 10.1007/s12393-013-9066-3.
  • 12. Pacek, A.W., Chamsart, S., Nienow, A.W. & Bakker, A. (1999). The influence of impeller type on mean drop size and drop size distribution in an agitated vessel. Chem. Eng. Sci. 54(19), 4211–4222. DOI: 10.1016/S0009-2509(99)00156-6.
  • 13. Formánek, R., Kysela, B. & Šulc, R. (2019). Drop size evolution kinetics in a liquid-liquid dispersions system in a vessel agitated by a Rushton turbine. Chem. Eng. Trans. 74, 1039–1044. DOI: 10.3303/CET1974174.
  • 14. Hall, S., Cooke, M., El-Hamouz, A. & Kowalski, A. (2011). Droplet break-up by in-line Silverson rotor-stator mixer. Chem. Eng. Sci. 66(10), 2068–2079. DOI: 10.1016/j.ces.2011.01.054.
  • 15. Carrillo De Hert, S. & Rodgers, T.L. (2018). Linking continuous and recycle emulsification kinetics for in-line mixers. Chem. Eng. Res. Des. 132, 922–929. DOI: 10.1016/j.cherd.2018.02.003.
  • 16. Adler-Nissen, J., Mason, S.L. & Jacobsen, C. (2004). Apparatus for emulsion production in small scale and under controlled shear conditions. Food Bioprod. Process. 82(4), 311–319. DOI: 10.1205/fbio.82.4.311.56401.
  • 17. Atiemo-Obeng, V. A. & Calabrese, R.V. (2003). Rotor–Stator Mixing Devices. In E.L. Paul, V.A. Atiemo-Obeng & S.M. Kresta (Eds), Handbook of Industrial Mixing: Science and Practice (pp. 475–505). Hoboken, New Jersey: John Wiley & Sons, Inc.
  • 18. John, T.P., Fonte, C.P., Kowalski, A. & Rodgers, T.L. (2019). A comparison of power and flow characteristics between batch and in-line rotor-stator mixers. Chem. Eng. Sci. 202, 481–490. DOI: 10.1016/j.ces.2019.03.015.
  • 19. Liu, N., Wang, W., Tian, Y., Wu, C. & Gong, J. (2017). Experimental and numerical study for drop size distribution in oil-water dispersions with nonionic surfactant Tween 80. Exp. Therm. Fluid. Sci. 89, 153–165. DOI: 10.1016/j.expthermflusci.2017.08.007.
  • 20. Roldan-Cruz, C., Vernon-Carter, E.J. & Alvarez-Ramirez, J. (2016). Assessing the stability of Tween 80-based O/W emulsions with cyclic voltammetry and electrical impedance spectroscopy. Colloids Surf. A Physicochem. Eng. Asp. 511, 145–152. DOI: 10.1016/j.colsurfa.2016.09.074.
  • 21. Chou, D.K., Krishnamurthy, R., Randolph, T.W., Carpenter, J.F. & Manning, M.C. (2005). Effects of Tween 20® and Tween 80® on the stability of Albutropin during agitation. J. Pharm. Sci. 94(6), 1368–1381. DOI: 10.1002/jps.20365.
  • 22. Patist, A., Bhagwat, S.S., Penfield, K.W., Aikens, P. & Shah, D.O. (2000). On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J. Surfactants Deterg. 3(1), 53–58. DOI: 0.1007/s11743-000-0113-4.
  • 23. Bąk, A. & Podgórska, W. (2016). Interfacial and surface tensions of toluene/water and air/water systems with nonionic surfactants Tween 20 and Tween 80. Colloids Surf. A Physicochem. Eng. Asp. 504, 414–425. DOI: 10.1016/j.colsurfa.2016.05.091.
  • 24. Pacek, A.W., Ding, P. & Nienow, A.W. (2001). The effect of volume fraction and impeller speed on the structure and drop size in aqueous/aqueous dispersions. Chem. Eng. Sci. 56(10), 3247–3255. DOI: 10.1016/S0009-2509(01)00015-X.
  • 25. El-Hamouz, A., Cooke, M., Kowalski, A. & Sharratt, P. (2009). Dispersion of silicone oil in water surfactant solution: Effect of impeller speed, oil viscosity and addition point on drop size distribution. Chem. Eng. Process.: Process Intensif. 48(2), 633–642. DOI: 10.1016/j.cep.2008.07.008.
  • 26. Tan, G., Qian, K., Jiang, S., Wang, J. & Wang, J. (2023). CFD-PBM Investigation on Droplet Size Distribution in a Liquid-Liquid Stirred Tank: Effect of Impeller Type. Ind. Eng. Chem. Res. 62(9), 4109–4121. DOI: 10.1021/acs.iecr.2c03695.
  • 27. Zainal Abidin, M.I.I., Abdul Raman, A.A. & Mohamad Nor,M.I. (2014). Experimental investigations in liquid-liquid dispersion system: Effects of dispersed phase viscosity and impeller speed. Ind. Eng. Chem. Res. 53(15), 6554–6561. DOI: 10.1021/ie5002845.
  • 28. Tian, Y., Zhou, J., He, C., He, L., Li, X. & Sui, H. (2022). The formation, stabilization and separation of oil–water emulsions: A Review. Processes. 10(4), 738 DOI: 10.3390/pr10040738.
  • 29. Hohl, L., Röder, V. & Kraume, M. (2019). Dispersion and phase separation of water-oil-amphiphile systems in stirred tanks. Chem. Eng. Technol. 42(8), 1574–1586. DOI: 10.1002/ceat.201800743.
  • 30. Pugnaloni, L.A., Dickinson, E., Ettelaie, R., Mackie, A.R. & Wilde, P.J. (2004). Competitive adsorption of proteins and low-molecular-weight surfactants: Computer simulation and microscopic imaging. Adv. Colloid Interface Sci. 107(1), 27–49. DOI: 10.1016/j.cis.2003.08.003.
  • 31. Sun, Z., Yan, X., Xiao, Y., Hu, L., Eggersdorfer, M., Chen, D., Yang, Z. & Weitz, D.A. (2022). Pickering emulsions stabilized by colloidal surfactants: Role of solid particles. Particuology. 64, 153–163. DOI: 10.1016/j.partic.2021.06.004.
  • 32. Zhang, T., Ding, M., Tao, N., Wang, X. & Zhong, J. (2020). Effects of surfactant type and preparation pH on the droplets and emulsion forms of fish oil-loaded gelatin/surfactant-stabilized emulsions. LWT. 117, 108654. DOI: 10.1016/j.lwt.2019.108654.
  • 33. Udomrati, S., Cheetangdee, N., Gohtani, S., Surojanametakul, V. & Klongdee, S. (2020). Emulsion stabilization mechanism of combination of esterified maltodextrin and Tween 80 in oil-in-water emulsions. Food Sci. Biotechnol. 29, 387–392. DOI: 10.1007/s10068-019-00681-x.
  • 34. Atarian, M., Rajaei, A., Tabatabaei, M., Mohsenifar, A. & Bodaghi, H. (2019). Formulation of Pickering sunflower oil-in-water emulsion stabilized by chitosan-stearic acid nanogel and studying its oxidative stability. Carbohydr. Polym. 210, 47–55. DOI: 10.1016/j.carbpol.2019.01.008
  • 35. Ferreira, A.C., Sullo, A., Winston, S., Norton, I.T. & Norton-Welch, A.B. (2020). Influence of ethanol on emulsions stabilized by low molecular weight surfactants. J. Food Sci. 85(1), 28–35. DOI: 10.1111/1750-3841.14947.
  • 36. Xu, X., Chen, H., Zhang, Q., Lyu, F., Ding, Y. & Zhou, X. (2020). Effects of oil droplet size and interfacial protein film on the properties of fish myofibrillar protein–oil composite gels. Molecules. 25, 289. DOI: 10.3390/molecules25020289.
  • 37. Nielsen, C.K., Kjems, J., Mygind, T., Snabe, T. & Meyer, R.L. (2016). Effects of Tween 80 on growth and biofilm formation in laboratory media. Front Microbiol. 7. DOI: 10.3389/fmicb.2016.01878.
  • 38. Dias, S.V.E., Züge, L.C.B., Santos, A.F. & Scheer, A. de P. (2018). Effect of surfactants and gelatin on the stability, rheology, and encapsulation efficiency of W1/O/W2 multiple emulsions containing avocado oil. J. Food Process Eng. 41(1), e12684. DOI: 10.1111/jfpe.12684.
  • 39. Fuller, G.T., Considine, T., MacGibbon, A., Golding, M. & Matia-Merino, L. (2018). Effect of Tween emulsifiers on the shear stability of partially crystalline oil-in-water emulsions stabilized by sodium caseinate. Food Biophys. 13, 80–90. DOI: 10.1007/s11483-017-9514-3.
  • 40. Kentish, S., Wooster, T.J., Ashokkumar, M., Balachandran, S., Mawson, R. & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. Technol. 9(2), 170–175. DOI: 10.1016/j.ifset.2007.07.005.
  • 41. Fells, A. De Santis, A., Colombo, M., Theobald, D.W., Fairweather, M., Muller, F. & Hanson, B. (2022). Predicting mass transfer in liquid–liquid extraction columns. Processes. 10, 968. DOI: 10.3390/pr10050968.
  • 42. Chung, C. & McClements, D.J. (2014). Structure-function relationships in food emulsions: Improving food quality and sensory perception. Food Struct. 1(2), 106–126. DOI: 10.1016/j.foostr.2013.11.002.
  • 43. Danov, K.D. (2001). On the viscosity of dilute emulsions. J. Colloid Interface Sci. 235(1), 144–149. DOI: 10.1006/jcis.2000.7315.
  • 44. Costa, M., Paiva-Martins, F., Losada-Barreiro, S. & Bravo-Díaz, C. (2021). Modeling chemical reactivity at the interfaces of emulsions: Effects of partitioning and temperature. Molecules. 26, 4703. DOI: 10.3390/molecules26154703.
  • 45. Mahmood, M.E. & Al-Koofee, D.A.F. (2013). Effect of temperature changes on critical micelle concentration for Tween series surfactant. Glob. J. Sci. Front. Res. 13(4), 1–7.
  • 46. El-Hamouz, A. (2007). Effect of surfactant concentration and operating temperature on the drop size distribution of silicon oil water dispersion. J. Dispers. Sci Technol. 28(5), 797–804. DOI: 10.1080/01932690701345893.
  • 47. Perinelli, D.R., Cespi, M., Lorusso, N., Palmieri, G.F., Bonacucina, G. & Blasi, P. (2020). Surfactant self-assembling and critical micelle concentration: one approach fits all? Langmuir 36(21), 5745–5753. DOI: 10.1021/acs.langmuir.0c00420.
  • 48. Drelich, A., Gomez, F., Clausse, D. & Pezron, I. (2010). Evolution of water-in-oil emulsions stabilized with solid particles. Colloids Surf. A Physicochem. Eng. Asp. 365(1–3), 171–177. DOI: 10.1016/j.colsurfa.2010.01.042.
  • 49. Bak, A. & Podgórska, W. (2012). Investigation of drop breakage and coalescence in the liquid-liquid system with nonionic surfactants Tween 20 and Tween 80. Chem. Eng. Sci. 74, 181–191. DOI: 10.1016/j.ces.2012.02.021.
  • 50. Murasiewicz, H., Nienow, A.W., Hanga, M.P, Coopman, K. Hewitt, C.J. &Pacek, A.W. (2017). Engineering considerations on the use of liquid/liquid two-phase systems as a cell culture platform. J. Chem. Technol. Biotechnol. 92(7), 1690–1698. DOI: 10.1002/jctb.5166.
  • 51. Murasiewicz, H. & Esteban, J. (2019). Assessment of the dispersion of glycerol in dimethyl carbonate in a stirred tank. Ind. Eng. Chem. Res. 58(16), 6933–6947. DOI: 10.1021/acs.iecr.9b01061.
  • 52. Hecht, L.L., Wagner, C., Landfester, K. & Schuchmann, H.P. (2011). Surfactant concentration regime in miniemulsion polymerization for the formation of MMA nanodroplets by high-pressure homogenization. Langmuir. 27(6), 2279–2285. DOI: 10.1021/la104480s.
  • 53. Pichot, R., Spyropoulos, F. & Norton, I.T. (2010). O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. J. Colloid Interface Sci. 352(1), 128–135. DOI: 10.1016/j.jcis.2010.08.021.
  • 54. Politova, N.I., Tcholakova, S., Tsibranska, S., Denkov, N.D. & Muelheims, K. (2017). Coalescence stability of water-in-oil drops: Effects of drop size and surfactant concentration. Colloids Surf. A Physicochem. Eng. Asp. 531, 32–39. DOI: 10.1016/j.colsurfa.2017.07.085.
  • 55. Santos, J., Trujillo-Cayado, L.A., Calero, N. & Muñoz, J. (2014). Physical characterization of eco-friendly O/W emulsions developed through a strategy based on product engineering principles. AIChE J. 60(7), 2644–2653. DOI: 10.1002/aic.14460.
  • 56. Maaß, S., Wollny, S., Sperling, R. & Kraume, M. (2009). Numerical and experimental analysis of particle strain and breakage in turbulent dispersions. Chem. Eng. Res. Des. 87(4), 565–572. DOI: 10.1016/j.cherd.2009.01.002.
  • 57. Shinnar, R. (1961). On the behaviour of liquid dispersions in mixing vessels. J. Fluid Mech. 10(2), 259–275. DOI: 10.1017/S0022112061000214.
  • 58. Leng, D.E. & Calabrese, R.V. (2003). Immiscible Liquid–Liquid Systems. In E.L. Paul, V.A. Atiemo-Obeng & S.M. Kresta (Eds), Handbook of Industrial Mixing: Science and Practice (pp. 639–753). Hoboken, New Jersey: John Wiley & Sons, Inc.
  • 59. Hinze, J.O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1(3), 289–295. DOI: 10.1002/aic.690010303.
  • 60. Chen, H.T. & Middleman, S. (1967). Drop size distribution in agitated liquid-liquid systems. AIChE J. 13(5), 989–995. DOI: 10.1002/aic.690130529.
  • 61. Janssen, J.J.M., Boon, A. & Agterof, W.G.M. (1994). Influence of dynamic interfacial properties on droplet breakup in simple shear flow. AIChE J. 40(12), 1929–1939. DOI: 10.1002/aic.690401202.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1a2c707-98f1-4c4e-888f-cd3388ba62d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.