PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gas turbine selection for feedwater repowering

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the concept of using hot exhaust gases from gas turbines with different power output to heat up feedwater in a supercritical power plant unit. The gas turbine is connected to the system, bypassing a high pressure regenerative heat exchanger. The benefits of this solution are discussed and the factors to be taken into account are listed. The criteria to be met by the gas turbine to ensure safe and optimal connection to the steam system are discussed. A reference unit model with 800 MW electric power (an existing super-critical power unit in Poland - Belchatow II) was created and presented in a previous paper by the same authors. This model was later supplemented with a gas turbine (three different models with different levels of power production are taken into consideration). The system with a gas turbine enjoys greater power and efficiency over the steam cycle alone. The power increase is due to the extra power generated by the gas turbine and the higher output of the steam system caused by increasing the steam flow through the turbine (closed extraction to the "bypassed" high-pressure heat exchanger). System power is changed linearly with the steam flow and reaches the nominal point 40..50% higher than without an added gas turbine (depending on gas turbine power and efficiency). The efficiency characteristics of the whole system are flatter, with higher values.
Rocznik
Strony
302--308
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
  • Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
Bibliografia
  • [1] R. Bhargava, M. Bianchi, S. Campanari, A. de Pascale, G. di Montenegro, A. Peretto, A parametric thermodynamic evaluation of high performance gas turbine based power cycles, Journal of Engineering for Gas Turbines and Power 132 (2010) Article number022001.
  • [2] T. Korakianitis, J. Grantstrom, P. Wassingbo, A. Massardo, Parametric performance of combined-cogeneration power plants with various power and efficiency enhancements, Journal of Engineering for Gas Turbines and Power 127 (2005) 65–72.
  • [3] M. Santarelli, M. Cali, R. Borchiellini, Thermoeconomic analysis of a combined cycle and an irsofc plant and carbon exergy tax influence on advanced systems economic competitiveness, American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES 41 (2001) 611–619.
  • [4] H. Brueckner, D. Bergmann, H. Termuehlen, Various concepts for topping steam plants with gas turbines, in: Americal Power Conference, 1992, pp. 1–14.
  • [5] T. Koike, Y. Noguchi, Repowering of thermal power plants as fully-fired combined cycle generating plants, Tech. rep., Chubu Electric Power Co & Hitachi Ltd. (1999).
  • [6] W. Budzianowski, Negative net co2 emissions from oxydecarbonization of biogas to h2, International Journal of Chemical Reactor Engineering 8 (2010) A156.
  • [7] J. Milewski, J. Lewandowski, A. Miller, Reducing co2 emissions from a gas turbine power plant by using a molten carbonate fuel cell, Chemical and Process Engineering 29 (4) (2008) 939–954.
  • [8] J. Kupecki, J. Milewski, A. Szczesniak, R. Bernat, K. Motylinski, Dynamic numerical analysis of cross-, co-, and countercurrent flow configuration of a 1 kw-class solid oxide fuel cell stack, International Journal of Hydrogen Energy 40 (45) (2015) 15834–15844.
  • [9] J. Milewski, M. Wołowicz, Ł. Szabłowski, J. Kuta, Control strategy for a solid oxide fuel cell fueled by natural gas operating in distributed generation, Energy Procedia 29 (2012) 676–682.
  • [10] A. Miller, Turbiny gazowe i układy parowo-gazowe, Wydawnictwa Politechniki Warszawskiej, 1984.
  • [11] W. C. Stenzel, D. M. Sopocy, S. E. Pace, Repowering existing fossil steam plants, Tech. rep., SEPRIL–Generation Power Solution (1999).
  • [12] J. M. Escosa, L. M. Romeo, Optimizing co2 avoided cost by means of repowering, Applied Energy 86 (2009) 2351–2358.
  • [13] C. C. Maslak, L. O. Tomlinson, Ge combined-cycle experience, Tech. rep., GE Power Generation (1994).
  • [14] M. Wołowicz, J. Milewski, K. Badyda, Feedwater repowering of 800 mw supercritical steam power plant, Journal of Power Technologies 92 (2012) 127–134.
  • [15] GateCycleTM – Getting Started and Installation Guide – Optimization and Diagnostic Software, 6th Edition (2009).
  • [16] J. Kotowicz, H. Łukowicz, . Bartela, S. Michalski, Validation of a program for supercritical power plant calculations, Archives of Thermodynamics 32 (4) (2011) 81–89.
  • [17] On prediction of steam turbine efficiencies - an introduction to spencer, cotton, and cannon method, Technical University of Berlin Institute for Energy Engineering (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c19bc65b-0e5b-4264-a527-6b4e682ef92d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.