PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Analysis of the Mechanical Properties of Hybrid Yarns with Superelastic Shape Memory Alloys (SMA) Wires Embedded

Identyfikatory
Warianty tytułu
PL
Analiza porównawcza właściwości mechanicznych przędz hybrydowych z udziałem superelastycznych drutów stopowych z pamięcią kształtu
Języki publikacji
EN
Abstrakty
EN
Fabrics made of natural fibers like cotton, flax, and their blends present elevated wearing comfort, but they are unfortunately subject to creasing. Attempts made to improve the wrinkle recovery of flax fabrics by embedding shape memory alloy (SMA) wires in a woven structure highlighted the low cohesion of the smooth wires and the overall “non-textile” aspect of the fabric. This study aimed to overcome these disadvantages by developing hybrid yarns that contain a superelastic SMA wire - Smartflex as a core, covered by textile yarns or fibers. Three types of hybrid yarns were produced, and their structure, aesthetics as well as tensile and bending properties were assessed and compared. The hybrid yarns were embedded in a woven structure, and it was found that they significantly contributed to the increase in the crease recover angle of the flax fabrics.
PL
Materiały wykonane z włókien naturalnych wykazują zwiększony komfort użytkowania ale niestety wykazują się dużą gniotliwością. Badano polepszenie właściwości tkanin lnianych poprzez włączenie w strukturę drutów ze stopów wykazujących pamięć kształtu. W tym celu opracowano przędze hybrydowe z udziałem superelastycznych drutów SMA – Smartflex umieszczonych w rdzeniu przędzy, pokrytym warstwą przędzy lub włókien. Wykonano trzy typy przędz hybrydowych, których estetykę i właściwości mechaniczne przebadano i porównano. Stwierdzono, że włókna hybrydowe wprowadzone do struktury tkaniny w sposób zdecydowany poprawiają właściwości tkanin lnianych, a zwłaszcza polepszają kąt odprężenia.
Rocznik
Strony
41--46
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Belgium, Zwijnaarde, Ghent University, Faculty of Engineering, Department of Textiles
autor
  • Kenya, Eldoret,, Moi University, School of Engineering
  • Belgium, Zwijnaarde, Ghent University, Faculty of Engineering, Department of Textiles
Bibliografia
  • 1. http://www.shape-memory-alloys.com website presents shape memory materials description.Visited on the 20th of November 2010.
  • 2. http://www.nimesis.com/ website presents shape memory materials description. Visited on the 20th of November 2010.
  • 3. http://www.mrsec.wisc.edu/Edetc/modules/ HighSchool/memory/Investigation2- Teacher.pdf. Website presents shape memory materials. Visited on the 1st of November 2010.
  • 4. University of Leuven, Department of Metallurgy and Materials Engineering, Adaptive Composites with Embedded Shape Memory Wires, on http://sirius. mtm.kuleuven.ac.be/Research/ADAPT/ index.html. Visited on th
  • 5. Ahlers M.; The Martensitic Transformation, Revista Matéria, Vol. 9, No. 3, 2004, pp. 169-183.
  • 6. Duerig T. W., Tolomeo D. E., Wholey M.; An overview of superelastic stent design, Min Invas Ther & Allied Technol. Vol. 9(3/4), 2000 pp. 235-246.
  • 7. Stalmans R., Van Humbeeck J.; Shape Memory Alloys: Functional and Smart, text was presented in the seminar “smart materials and technologies - sensors, control systems and regulators, October 1995, Prague, Czech Republic”.
  • 8. XiaoJun Yan, JingXu Nie, Study of a new application form of shape memory alloy superelasticity, Institute of Physics Publishing Smart Materials and Structures Smart Mater. Struct. 12 (2003) N14–N23 PII: S0964-1726(03)68898-1.
  • 9. Van Humbeeck J.; Mat. Res. Soc. Symp. Proc., Vol. 246, 1992, pp. 377-378.
  • 10. http://www.gzespace.com/gzenew/index. php?pg=oricalco&lang=en visited April 2009.
  • 11. EU project AVALON, on http://avalon. ditfdenkendorf. de/ visited April 2009.
  • 12. EU project Loose&Tight, on http://www. dappolonia-research.com/loose&tight/. Visited on the 2nd of November 2010.
  • 13. Carosio S., Monero A.; Smart and hybrid materials: perspectives for their use in textile structures for better health care, Wearable eHealth Systems for Personalized Health Management, Studies in Health Technology and Informatics, Vol. 108, pp. 335-344, IOS Press.
  • 14. Stylios G. K.; Engineering textile and clothing aesthetics using shape changing materials, part II in Intelligent textiles and clothing, edited by H Mattila, Tampere University of Technology, Finland, Woodhead Textiles Series No. 54.
  • 15. Stylios G. K., Wan T.; Shape memory training for smart fabrics, on http://tim.sagepub. com/cgi/content/abstract/29/3-4/321. Visited on the 12th of February 2009.
  • 16. www.marielleleenders.nl. Website presents links to information about shape memory materials. Visited on the 1st of November 2010.
  • 17. Boussu F., Bailleul G., Petitniot J.-L., Vinchon H.; Development of shape memory alloy fabrics for composite structures, AUTEX Res J, No. 1 (2002), pp. 1-7.
  • 18. Zhang R.X., Ni Q. Q., Masuda A., Yamamura T., Iwamoto M.; Vibration characteristics of laminated composite plates with embedded Shape Memory Alloys, Composite Structures, Elsevier Science Publishing Company, Inc., No. 74 (2006), pp 389-398.
  • 19. Yvonne Y. F., Vili Chan.; Investigating Smart Textiles Based on Shape Memory Materials, Textile Research Journal; Vol. 77, 2007 p. 290.
  • 20. Vasile S., Grabowska K. E., Ciesielska I. L., Githaiga, J., Analysis of Hybrid Woven Fabrics with Shape Memory Alloys Wires Embedded., FIBRES & TEXTILES in Eastern Europe 2010, Vol. 18, No. 1 (78) pp. 64-69.
  • 21. Behera B. K., Hari P. K.; Woven textile structure, page 197, Creasing in woven fabrics, Woodehead Publishing ISBN 978-1-84569-514-9, 2010.
  • 22. Kers J., Peetsalu P., Saarna M., Viikna A., Krumme A., Menind A.; Preliminary Investigation into Tensile Characteristics of Long Flax Fibre Reinforced Composite Material, Proceedings of International Scientific Conference “Biosystems Engineering 2010”, 13-24. May 2010, Tartu, Estonia, pp. 107-114.
  • 23. Cell D.; Software by Olympus Imaging Software for Lufe Science Microscopy, booklet.
  • 24. ISO 2062: 1993: “Textile-Yarns from package. Determination of single-end breaking force and elongation at break”.
  • 25. Rambour, S. Janssens, S, Schoukens, G., Kiekens, P., et. al. A new method to test the resilience of a yarn for application in artificial turf, Conference proceedings of “Science, technology and research into sports surfaces”, STARSS (2007).
  • 26. NBN G55 020: 1988: “Determination of the wrinkle recovery of fabrics- Appearance method”.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c19b81f7-658a-42b7-9a5f-8038b3094d8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.