PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Monitoring particle size distribution for water treatment processes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Efficiencies of unit processes such as flocculation, sedimentation and filtration were analyzed based on particle size distribution in one of the several water treatment plants supplying Cracow (Poland). The predicted efficiencies determined based on concentration of volumetric suspension, nephelometric turbidity and absorbance were compared with each other. Interpretation of the results was proposed based on the Mie scattering theory. The results of theoretical analysis suggested much stronger influence of finer particles on absorbance and nephelometric turbidity than that of larger particles. The experimental results confirmed this suggestion. Hence, the more efficient removal of larger particles during the process resulted in a higher efficiency of the process based on the concentration of volumetric suspension than those predicted based on the nephelometric turbidity or absorbance. For a rapid filtration process, which is strongly dynamic, relation was analyzed for various filter run times.
Rocznik
Strony
167--177
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Water Supply and Environmental Protection Institute, Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland
Bibliografia
  • [1] GAJEWSKA M., Fluctuation of nitrogen fraction during wastewater treatment in a multistage treatment wetland, Environ. Prot. Eng., 2011, 37 (3), 119
  • [2] CRAIG F.B., HUFFMAN D.R., Absorption and Scattering of Light by Small Particles, Wiley, Weinheim 1998.
  • [3] JONES R.M., Particle size analysis by laser diffraction: ISO 13320, standard operating procedures, and Mie theory, Amer. Lab., 2003, 1, 44.
  • [4] SADAR M., Turbidity Science, Technical Information Series, Booklet. 11, Hach Company, Loveland, Col., USA, 1998.
  • [5] ELIMELECH M., JIA X., GREGORY J., WILLIAMS R.A., Particle deposition and aggregation. Measurement, modelling and simulation, Butterworth-Heinemann, Woburn 1995.
  • [6] GREGORY J., Turbidity and beyond, Filtr. Sep., 1998, 35 (1), 63.
  • [7] MCMILLAN G.K., CONSIDINE D.M., Process/Industrial Instruments and Controls Handbook, McGraw- -Hill, 5th Ed., USA, 1999.
  • [8] LECHEVALLIER M.W., NORTHON W.D., Examining relationship between particle counts and Giarda, Cryptosporidium and turbidity, J. Am. Water Works Assoc., 1992, 84 (12), 54.
  • [9] KOBLER D., BOLLER M., Particle removal in different filtration systems for tertiary wastewater treatment. A comparison, Water Sci. Technol., 1997, 36 (4), 259.
  • [10] GUMIŃSKA J., KŁOS M., Analysis of post-coagulation properties of flocs in terms of coagulant choice, Environ. Prot. Eng., 2012, 38 (1), 103.
  • [11] ZIELINA M., Particle shapes in the drinking water filtration process, Clean: Soil, Air, Water, 2011, 39 (11), 941.
  • [12] GALLOWAY J.M., Determination of Organic and Inorganic Percentages and Mass of Suspended Material at Four Sites in the Illinois River in Northwestern Arkansas and Northeastern Oklahoma, 2005–07, Scientific Investigations Report 2008–5136, U.S. Geological Survey, Reston 2008.
  • [13] VALKENBURG J.A.C., WOLDRINGH C.L., Phase separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry, J. Bacteriol., 1984, 160 (3), 1151.
  • [14] ROBERTSON B.R., BUTTON D.K., KOCH A.L., Determination of the biomasses of small bacteria at low concentrations in a mixture of species with forward light scatter measurements by flow cytometry, Appl. Environ. Microbiol., 1998, 64 (10), 3900.
  • [15] JONASZ M., FOURNIER G., STRAMSKI D., Photometric immersion refractometry: a method for determining the refractive index of marine microbial particles from beam attenuation, Appl. Opt., 1997, 36 (18), 4214.
  • [16] MOREL A., AHN Y.H., Optical efficiency factors of free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters, J. Mar. Res., 1990, 48 (1), 145.
  • [17] TWARDOWSKI M.S., BOSS E., MACDONALD J.B., PEGAU W.S., BERNARD A.H., ZANEVELD J.R.V., A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters, J. Geophys. Res., 2001, 106 (C7), 14129.
  • [18] STRAMSKI D., BRICAUD A., MOREL A., Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community, Appl. Opt., 2001, 40 (18), 2929.
  • [19] ANDREWS S., NOVER D., SCHLADOW G., Using laser diffraction data to obtain accurate particle size distributions: the role of particle composition, Limnol. Oceanogr.: Methods, 2010, 8 (10), 507.
  • [20] WILEN B.M., JIN B., LANT P., Impacts of structural characteristics on activated sludge floc stability, Water Res., 2003, 37, 3632.
  • [21] GOVOREANU R., SAVEYN H., VAN DER MEEREN P., NOPENS I., VANROLLEGHEM P.A., Direct quantification techniques for activated sludge floc size distribution, Water Sci. Technol., 2009, 60 (7), 1857.
  • [22] YAO K.M., HABIBIAN M.T., O’MELIA C.R., Water and wastewater filtration. Concepts and applications, Environ. Sci. Technol., 1971, 5 (11), 1105.
  • [23] ZIELINA M., HEJDUK L., Measurement of the depth filters for water treatment, Filtration, 2007, 7 (3), 225
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c192565b-c5d0-453e-983b-542d340091e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.