PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Size optimization of rectangular cross-section members subject to fatigue constraints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although in the scientific literature there are studies regarding optimization of structural members subject to static loads or even cyclic in-phase loads, the optimization of structures subject to cyclic, out-of-phase multiaxial loads is still an unexplored issue. In this paper, we present an approach to the problem of size optimization of rectangular cross-section members subject to multiaxial in-phase and out-of-phase cyclic loads. The objective of the optimization is to minimize the cross sectional area of such elements while retaining their fatigue endurance. Under the proposed methodology, optimum values of the area are achieved for six loading cases and for three values of the height to width ratio of the cross section, and these values are reported. The novelty of the approach lies in the inclusion of two multiaxial high cycle fatigue criteria, i.e., Dang Van and Vu-Halm-Nadot ones, as constraints for size optimization problems, fully integrated within an in-house developed tool, capable of handling non-proportional stresses. A plot of the feasible solution space for this optimization problem is also obtained.
Rocznik
Strony
547--557
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Department of Graduate Studies and Research, National Polytechnic Institute, Mexico
  • Department of Graduate Studies and Research, National Polytechnic Institute, Mexico
  • UPIITA, National Polytechnic Institute, Mexico
  • UPIITA, National Polytechnic Institute, Mexico
Bibliografia
  • 1. Andjelić N., Milosević-Mitić V., 2012, Optimum design of thin-walled I-beam subjected to stress constraint, Journal of Theoretical and Applied Mechanics, 50, 4, 987-999
  • 2. Baptista R., Claudio R.A., Reis L., Guelho I., Freitas M., Madeira J.F.A., 2014, Design optimization of cruciform specimens for biaxial fatigue loading, Frattura ed Integrit´a Strutturale, 30, 118-126
  • 3. Boresi A.P., 2002, Advanced Mechanics of Materials, 6th edition, Wiley
  • 4. Christensen P., Klarbring A., 2009, An Introduction to Structural Optimization, Springer
  • 5. Dang Van K., Griveau B., Message O., 1989, On a new multiaxial fatigue limit criterion: theory and applications, [In:] Biaxial and Multiaxial Fatigue, EGF 3, M.W. Brown and K.J. Miller (Edit.), Mechanical Engineering Publications, London, 479-496
  • 6. Gasiak G., Robak G., 2010, Simulation of fatigue life of constructional steels with the mixed modes I and III loading, Fatigue and Fracture of Engineering Materials and Structures, 34, 389-402
  • 7. Ghelichi R., Bernasconi A., Guagliano M., 2011, Geometrical optimization of notches under multiaxial fatigue loading, International Journal of Fatigue, 33, 985-991
  • 8. Holmberg E., Torstenfelt B., Klarbring A., 2014, Fatigue constrained topology optimization, Structural Multidisciplinary Optimization, 50, 207-219
  • 9. Jeong S.H., Choi D.H., Yoon G.H., 2015, Fatigue and static failure considerations using a topology optimization method, Applied Mathematical Modelling, 39, 1137-1162
  • 10. MATLAB. R2013b documentation. The MathWorks, Inc.; 2013
  • 11. Mrzygłód M., 2010, Two-stage optimization method with fatigue constraints for thin-walled structures, Journal of Theoretical and Applied Mechanics, 48, 3, 567-578
  • 12. Mrzygłód M., Zieliński A.P., 2006, Numerical implementation of multiaxial high-cycle fatigue criterion to structural optimization, Journal of Theoretical and Applied Mechanics, 44, 3, 691-712
  • 13. Papadopoulos I.V., Davoli P., Gorla C., Filippini M., Bernasconi A., 1997, A comparative study of multiaxial high-cycle fatigue criteria for metals, International Journal of Fatigue, 19, 3, 219-235
  • 14. Rozumek D., Marciniak Z., Macha E., 2010, Fatigue life of specimens with round and rectangular cross-sections under out-of-phase bending and torsional loading, The Ninth International Conference on Multiaxial Fatigue and Fracture (ICMFF9), Parma (Italy), 75-85
  • 15. Timoshenko S., Goodier J.N., 1951, Theory of Elasticity, 2nd edition, McGraw-Hill
  • 16. Venkataraman P., 2002, Applied Optimization with MATLAB Programming, Wiley
  • 17. Vu Q.H., Halm D., Nadot Y., 2010, Multiaxial fatigue criterion for complex loading based on stress invariants, International Journal of Fatigue, 32, 1004-1014
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c190954b-61f4-4b1f-8307-20a0dea6ff10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.