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Abstract: This paper describes the manually use of the lazy evaluation code optimization

method in the component environments such as Java VM, MS .NET, Mono. Despite the im-

plemented solutions in optimizers, there are occurrences when manual code optimization can

accelerate execution of programs. In component environments, due to the optimization per-

formed during JIT (Just In Time) compilation, the code cannot be fully optimized because of

the short time available. JIT optimization takes place during execution of the currently used

part of the code. That is the reason why the time spent on searching the best optimization

methods must be balanced between the program response time and the choice of optimal

optimization. This article presents optimization method ending with conclusion to answer

in which component environment is recommended to use a given method manually. The

presented method is called lazy evaluation.
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1. Introduction

This article was written to prove that the use of manual code optimization allows

to achieve additional speed as opposed to using only optimizers incorporated in the

component environments. Similar research can be found in the article about loop

optimization [16].

At present, the component environments are widely used for coding various pro-

grams, because of their main advantages: code portability between different operat-

ing systems and computer architectures; the standardized notation of the code, which

allows for using universal optimization methods [1].

Currently used digital machines, reached its limit of computing due to the

achievement of maximum technological potential capabilities, hence multiple pro-

grams may have long execution time. That is why, complicated calculations are per-

formed in the schema of cloud computing. Even on a single machine, as well as on
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multiple machines, it is natural to search for the appropriate code optimizations that

reduce the computation time.

There are two cases where optimization should be applied: programs whose run-

ning time is long, such as used in the geophysics (magnetotellurics) [13], or in pro-

grams where data must be processed quickly, such as in multimedia [17].

Optimization methods are currently looked for in many areas of science, such

as: video reconstruction [7], the problem of resource block allocation for downlink

Long Term Evolution (LTE) [10], acceleration of generalized minimum aberration

designs of hadamard matrices [4], acceleration of element subroutines in finite ele-

ment method [5], stereo images processing [8].

Optimization method presented in this article was examined. Method was tested

on a different computer architecture and in different operating systems. In each case,

program execution was timed, intermediate code examined (reverse engineering), and

results summarized. The results allowed to answer when, why and in which compo-

nent environments it is recommended to use a given method.

2. Compilation and optimizatfion methods

Compilation in all the environments mentioned in this article is performed in the same

way. In the beginning, the source code is compiled through compilers provided with

the package for developers into the intermediate code. The obtained files are then

compiled once again by a virtual machine at the program’s startup. Virtual machines

compile the intermediate code to machine code which is executed by the processor.

Compilation of the intermediate code to the machine code is performed by the JIT

compiler; it takes place in stages and is subject to ad hoc optimizations at intervals

set by the machine (thus the name: Just-in-Time).

JIT compilation occurs at the start of the application. It is performed at every

launch of the program, because it could happen that the intermediate code has been

moved to a different hardware platform or operating system. The purpose of the afore-

mentioned compilation is to translate the intermediate code into the machine code of

the currently used platform. Each code method or function is compiled only when

there is need for it. Thus, the program can run without being fully compiled, because

some methods may be unused. During the execution of the program, once the com-

piled parts are not lost and can be reused, they are loaded into the cache as ready to

use the machine code [6,12,15].

JIT compilation is limited only by one factor: time. This is due to the fact of

its execution during the launch of the application. Therefore, the analysis and code
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optimization cannot last as long as they could at the AOT (Ahead-of-Time) compila-

tion. [14] However, its advantages are code portability and application optimization

suited to the currently used hardware and operating system. To compare, applica-

tions compiled using the JIT techniques run faster than scripts which are executed by

interpreters [2].

The program can be implemented in many different ways and in all cases the

result will be correct. However, certain approaches can be [3]:

– easier (the solution of the problem itself thanks to which the implementation can

be easier and more understandable);

– cleaner (they use less memory);

– easier to maintain (to adapt the code to frequent changes and improvements);

– faster (time to obtain the result is shorter).

3. Methodology and test performance characteristics

In order to distinguish test environments, later in the paper they are named by short-

cuts E64 and E32. Numbers designate operating systems (32 and 64 bits) installed in

the respective test environments.

Hardware specification (E64): Intel R© CoreTM 2 E6400 @ 2.46GHz (CPU),

1.5GB DDR2-667 (640MHz) (RAM). Operating systems (E64): Microsoft Windows

7 Professional SP1 (64bit), Fedora 16 (64bit).

Hardware specification (E32): Intel R© Celeron R© M520 @ 1.60GHz (CPU),

512MB DDR2-667 (532MHz) (RAM). Operating systems (E32): Microsoft Win-

dows XP Professional SP2 (32bit), Fedora 11 (32bit).

Virtual machines installed in an E32 and E64 environments: Microsoft .NET 4.0

(Windows), Microsoft .NET 2.0 (Windows), Java Development Kit 7u4 (Windows

and Linux), Mono 2.10.8 (Windows), Mono 2.4.3 (Fedora 11 - E32), Mono 2.10.5

(Fedora 16 - E64).

In order to reach objective test results, all testing was performed in the same

way, in accordance with the principles set out below.

– Tested instructions were carried out in a loop; the total time of their operation

was measured. The loop had a predefined amount of iterations.

– If the test required sample data, they were randomized for each iteration of the

loop. Randomizing took place before the measurement of time and the values

were stored in arrays. Data were randomized in order to keep the conditions close

to real application run. Thanks to randomization, the data were both pessimistic

and optimistic (those that can make to return result faster or slower).The random-

izer was initiated using current time.
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– The measurements were performed for each test ten times. It is always the short-

est time of all that was chosen. This approach is burdened with the smallest error,

due to the applications that run in the background in a test environment [9].

– To measure time with nanosecond accuracy, methods provided together with

executing environments were used. In Mono and .NET, the Stopwatch class

from System.Diagnostics package was used, while in Java, it was the Sys-

tem.nanoTime() method.

– The use of the source code compilers to bytecode:

• .NET, compiler csc with /o flag (optimization launch),

• Mono, compiler mcs with -optimize+ flag (optimization launch),

• Java, compiler javac (by default, optimization is turned on).

– The use of JIT compilers:

• .NET, lack of interference in the applied optimization,

• Mono, compiler mono with flag -O=all (turn on all possible optimization),

• Java, compiler java with flag -XX:+AggressiveOpts (optimizations foreseen

for the next release of JVM), also separately launched in mode -client and

-server.

4. Performance of the lazy evaluation

The test is performed in order to compare the time spans after the use of optimization

of the lazy evaluation. [11] The test cases provide for using optimization manually

and the lack of the optimization. In addition, tests were carried out for different ranges

of the variables that are permitted by conditional statements. This is performed to

check whether there is a correlation between the range of the permitted variables in

conditional statements and the time of the program execution. In addition, the test

is designed to draw attention to the memory usage and the intermediate code after

disassembling.

The test was performed as described by pseudo-code shown in Alg. 1. During

the randomization of sample data vector (variable vector) it is worth noting that the

numbers are randomized from the closed interval <-100;100>. Four variants have

been provided for the test; the fundamental difference is shown by Tab. 1. In general,

in each variant timeConsumingFunction() (Alg. 2) have been executed and random

number from the first element of the vector variable have been checked. The content

of the Tab. 1 with the appropriate variant should be inserted in the comment’s place

in the pseudo-code shown in Alg. 1. The timeConsumingFunction() is designed to

perform several calculations (addition, multiplication, division with remainder) that

perform longer than it takes to compare numbers. The condition upon which the

56



Lazy evaluation method in the component environments

function printOnScreen(count) is executed is noteworthy. In testing, the condition

was never fulfilled, but using it ensured that the optimizer does not recognize the

count variable as unused in the code. Optimizers encountering unused variables in the

code often use additional optimizations, which had an impact on the test. Typically,

fragments of the code which handle such variables are treated as redundant, and this

fragment of code is the main part of the test. Lack of that condition caused shortening

of the times measured.

Algorithm 1 pseudo-code for the test of the lazy evaluation

Ensure: time

1: for i=0 to i < 1 000 000; i++ do

2: for j = 0 to j < 10; j++ do

3: vector[i][j] = randomNumber()% 201 - 100;

4: end for

5: end for

6: startTime();

7: for i=0 to i < 1 000 000; i++ do

8: if /* Different cases from Tab. 2 */ then

9: count++;

10: end if

11: end for

12: stopTime();

13: if count > 500 000 then

14: printOnScreen(count);

15: end if

Algorithm 2 timeConsumingFunction

Require: vector

Ensure: boolean

1: sum = 0;

2: var = 1;

3: for i = 0 to i < 10; i++ do

4: sum += vector[i];

5: var *= vector[i];

6: end for

7: return ((sum + var) % 2 == 0) ? true : false;
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Table 1. Variants for the test of the lazy evaluation

Variant Code to insert

B1 – before optimization, permitted range (0;100),

half of the range of values which have been ran-

domized into the vector variable

timeConsumingFunction(vector[i]) && vec-

tor[i][0]<100 && vector[i][0]>0

B2 – after optimization, permitted range (0;100) ,

half of the range of values which have been ran-

domized into the vector variable

vector[i][0]<100 && vector[i][0]>0 && timeCon-

sumingFunction(vector [i])

B3 - before optimization, permitted range (50;100)

, one fourth of the range of values which have been

randomized into the vector variable

timeConsumingFunction(vector[i]) && vec-

tor[i][0]<100 && vector[i][0]>50

B4 - after optimization, permitted range (50;100),

one fourth of the range of values which have been

randomized into the vector variable

vector[i][0]<100 && vector[i][0]>50 && time-

ConsumingFunction(vector[i])

In Tab. 2 all the times measured during the test have been gathered. In addi-

tion, the acceleration of using various optimization variants with different order of

conditions and ranges of permitted variables has been calculated.

The measured times in the test environment E64 and E32.

Execution time in variants B1 and B3 in every case is almost equal. Using opti-

mization of the lazy evaluation (B2, B4) always reduced the duration of the program

execution. More restrictive limit range of permitted values (variant B4) additionally

reduces the program’s execution time.

The measured times in the test environment E64.

The fastest is the program executed in .NET Framework and in the JVM, client ver-

sion in Windows 7 in variant B4. The slowest is the program executed in variants B1

and B3 in the JVM, client version in Windows 7 and in Mono in Fedora 16.

The measured times in the test environment E32.

The fastest is the program executed in .NET Framework and in the JVM, client ver-

sion on both operating systems in variant B4. The slowest is the program executed

in variants B1 and B3 in the JVM, client version in both operating systems. Note the

variant B4 in JVM client version on Fedora 11, where the execution time is almost

equal to the same variant in E64 test environment on Fedora 16.
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Table 2. Test results of the lazy evaluation

Environment
Time [ms] Acceleration [%]

B1 B2 B3 B4 (B1-B2)/B1 (B3-B4)/B3

E64

Windows 7

.NET 2.0 30.918 21.645 30.398 16.446 29.99 45.90

.NET 4.0 33.233 22.120 32.427 16.701 33.44 48.50

Mono 41.313 28.161 41.305 20.334 31.84 50.77

Java Client 50.554 20.104 49.915 16.061 60.23 67.82

Java Server 32.990 22.159 32.781 19.872 32.83 39.38

Fedora 16

Mono 50.927 33.221 50.068 25.772 34.77 48.53

Java Client 37.411 28.111 37.797 23.177 24.86 38.68

Java Server 39.251 26.705 35.841 24.076 31.96 32.83

E32

Windows XP

.NET 2.0 50.233 34.898 49.396 25.617 30.53 48.14

.NET 4.0 53.881 35.941 52.697 26.166 33.30 50.35

Mono 69.747 45.637 69.621 32.336 34.57 53.55

Java Client 80.212 32.340 78.951 25.004 59.68 68.33

Java Server 58.671 37.979 58.322 35.147 35.27 39.74

Fedora 11

Mono 66.111 43.688 66.202 30.745 33.92 53.56

Java Client 79.162 31.932 77.929 24.543 59.66 68.51

Java Server 60.916 40.046 60.212 37.219 34.26 38.19

The acceleration in test environment E64 and E32.

The first acceleration was achieved after using the optimization of the lazy evalua-

tion on the code from the B1 variant, while the second was obtained after using the

optimization of the lazy evaluation on the code from the B3 variant. The main differ-

ence is the range limit of the first number from the vector variable in the conditional

statement. In the mentioned cases, the acceleration of the program execution has been

noted. There was a higher acceleration when the limiting range was from the inter-

val (50;100). However, there is no linear relationship between the various ranges and

acceleration.

The acceleration in test environment E64.

The smallest impact between the permitted range and acceleration is observed in the

JVM, server version in Fedora 16. The highest acceleration occurs in the JVM, client

version in the Windows 7 operating system. By optimizing the program in the JVM,

client version in Windows 7, it has grown from the slowest to the fastest. The smallest

acceleration was recorded in the JVM, client version in Fedora 16 with range (0;100).
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The acceleration in test environment E32.

The smallest impact between the permitted range and acceleration is observed in the

JVM, server version in both operating systems. The highest acceleration occurs in

the JVM, client version in both operating systems. By optimizing the program in

the JVM, client version in both operating systems, it has grown from the slowest to

the fastest. The smallest acceleration was recorded in the JVM server version (both

operating systems), .NET Framework and Mono (both operating systems) with range

(0;100).

Below are presented the Java bytecodes of conditional statement after disassem-

bling, which is the critical part of the test. Conditional statement in the B3 variant is

presented on Tab. 3, while in the B4 variant on Tab. 4. It should be noted that during

generation of the intermediate code by the compiler, it did not changed the sequence

of conditions. In the B3 variant, the sequence of execution is: function timeConsum-

ingFunction() (number 83:), comparison with the number 100 (number 92: and 94:),

and finally a comparison with the number 50 (number 100: and 102:). While in the

B4 variant the sequence of execution is (by changing the order obtained the accel-

eration in test): comparison with the number 100 (number 84: and 86:), comparison

with the number 50 (number 92: and 94:), and finally execution of the function time-

ConsumingFunction() (number 99:), if the previous conditions were met.

Table 3. Disassembly of Java bytecode – lazy evaluation before optimization in the

variant B3

81: aload_1

82: aload_2

83: invokevirtual #12; //Method timeConsumingFunction:([I)Z

86: ifeq 108

89: aload_2

90: iconst_0 91: iaload

92: bipush 100

94: if_icmpge 108

97: aload_2

98: iconst_0

99: iaload

100: bipush 50

102: if_icmple 108
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Table 4. Disassembly of the Java bytecode – lazy evaluation after optimization in the

variant B4

81: aload_2

82: iconst_0

83: iaload

84: bipush 100

86: if_icmpge 108

89: aload_2

90: iconst_0

91: iaload

92: bipush 50

94: if_icmple 108

97: aload_1

98: aload_2

99: invokevirtual #12; //Method timeConsumingFunction:([I)Z

102: ifeq 108

Below are presented managed code compiled using a csc compiler provided

with .NET Framework disassembled by the Ildasm tool. It shows the managed code

of conditional statement in the variants B3 (Tab. 5) and B4 (Tab. 6). It is worth not-

ing that the instructions after compiling with mcs compiler provided with Mono en-

vironment are identical after disassemblation by the Ildasm tool. In the B3 variant

the sequence of execution is: function timeConsumingFunction() (lines IL_0060 and

IL_0065), comparison with the number 100 (line IL_006c), finally a comparison with

the number 50 (line IL_0073). While in the B4 variant, the sequence of execution is

(by changing the order obtained the acceleration in test): comparison with the num-

ber 100 (line IL_0063), comparison with the number 50 (line IL_006a), and finally

execution of the function timeConsumingFunction() (lines IL_006e and IL_0073), if

the previous conditions were met.

In summary, the best solution is to use optimization of the lazy evaluation in

all environments. Its effectiveness depends on the permitted values in conditional

statement. More restrictive conditions must be applied at the beginning of a con-

ditional statement, because they allow eliminating most cases at the beginning and

probably further check will not be necessary. Due to this, greater acceleration could

be achieved, but it also still depends on the specific runtime environment. But we

should not forget that more restrictive conditions may be much more expensive com-

putationally. In this case, times should by measured again, because less expensive

computationally conditions maybe should be checked earlier. There should be found
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Table 5. Disassembly of thr managed code compiled with csc compiler and used

Ildasm tool – lazy evaluation before optimization in the variant B3

IL_005e: ldloc.0

IL_005f: ldloc.1

IL_0060: callvirt instance bool SprawdzanieWarunkowPRZED.

SprawdzanieWarunkowPRZED:: timeConsumingFunction (int32[])

IL_0065: brfalse.s IL_0079

IL_0067: ldloc.1

IL_0068: ldc.i4.0

IL_0069: ldelem.i4

IL_006a: ldc.i4.s 100

IL_006c: bge.s IL_0079

IL_006e: ldloc.1

IL_006f: ldc.i4.0

IL_0070: ldelem.i4

IL_0071: ldc.i4.s 50

IL_0073: ble.s IL_0079

Table 6. Disassembly of the managed code compiled with csc compiler and used

Ildasm tool – lazy evaluation after optimization in the variant B4

IL_005e: ldloc.1

IL_005f: ldc.i4.0

IL_0060: ldelem.i4

IL_0061: ldc.i4.s 100

IL_0063: bge.s IL_0079

IL_0065: ldloc.1

IL_0066: ldc.i4.0

IL_0067: ldelem.i4

IL_0068: ldc.i4.s 50

IL_006a: ble.s IL_0079

IL_006c: ldloc.0

IL_006d: ldloc.1

IL_006e: callvirt instance bool SprawdzanieWarunkowPO.

SprawdzanieWarunkowPO:: timeConsumingFunction (int32[])

IL_0073: brfalse.s IL_0079
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the middle ground solution between the time of checking and the range of permissible

values. The most important thing in this case is the programmer’s knowledge about

the problem. Particular attention should be paid to the fact that when the optimization

is not applied, the effect of limiting the range is negligible. The use of optimization

does not affect the additional memory consumption, which is at a constant level.

Garbage Collector and the optimizations implemented in all environments can easily

handle memory management.

5. Conclusions

The authorial contribution is the analysis of acceleration in the component environ-

ments after using various optimization with conclusions about it. Benchmarks pre-

sented in this paper may help developers to write their own code. On this basis, they

can determine that in their case, the optimization would be effective or not. The anal-

ysis specifies opportunities to optimize the code in the various stages of the work

with it. The entire testing process, allow to explain and understand what the opti-

mizations do. Testing is also a time-consuming task, so they will not have to undergo

the same testing process as shown in article, thanks to the results and conclusions

to every test presented here. In the test, also the factors on which effectiveness of

optimization method may depend have been pointed, such as the limiting range in

the optimization of the lazy evaluation. In this article, the intermediate code was an-

alyzed by using reverse engineering methods. The analysis of the intermediate code

which provides instructions similar to those that would be executed by the processor,

allows to understand the essence of the optimizations.
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METODA „LAZY EVALUATION” W ŚRODOWISKACH

KOMPONENTOWYCH

Streszczenie Artykuł opisuje użycie metody optymalizacji kodu “lazy evaluation” w śro-

dowiskach komponentowych (Java VM, MS .NET, Mono). Pomimo zaimplementowanych

rozwiązań w optymalizatorach, występują przypadki, gdy doraźne zoptymalizowanie kodu

skutkuje przyspieszeniem pracy programu. Optymalizacja kodu jest przeprowadzana pod-

czas kompilacji JIT (Just In Time) w środowiskach komponentowych, dlatego kod nie może

zostać w pełni zoptymalizowany. Optymalizacja i kompilacja następuje w momencie wy-

wołania danej części kodu przez aplikację. Skutkuje to ograniczonym czasem, który jest

dostępny na poszukiwanie najlepszej optymalizacji. Dostępny czas musi zostać zbalanso-

wany pomiędzy czas odpowiedzi programu, a wybór optymalnej metody optymalizacji. Ar-

tykuł zakończono wnioskami, które pozwalają odpowiedzieć na pytanie, kiedy użycie me-

tody “lazy evaluation” jest zalecane.

Słowa kluczowe: optymalizacja kodu, środowiska komponentowe, lazy evaluation
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