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JERZY MICHALCZYK*

MATHEMATICAL MODEL OF A GENERAL MOTION OF VIBRATORY MACHINES DRIVEN 
BY MOTORS OF A LIMITED POWER

MODEL MATEMATYCZNY RUCHU OGÓLNEGO MASZYN WIBRACYJNYCH NAPĘDZANYCH 
SILNIKAMI OGRANICZONEJ MOCY

The method of creating the mathematical model of over-resonant vibratory machines driven in a ge-
neral motion by the inertial vibrator of a limited power is presented in the paper. This model can constitute 
the basis for digital simulation of single- or multi-drive vibratory machines used in industry. It allows 
to investigate the steady and transient states of these machines as well as to investigate the advanced 
problems of the free synchronisation of drives.

Keywords: vibratory machines of a limited power, vibrations in general motion, self-synchronisation, 
transient states

W pracy przedstawiono sposób budowy modelu matematycznego nadrezonansowej maszyny wi-
bracyjnej w ruchu ogólnym, napędzanej wibratorem inercyjnym ograniczonej mocy. Model ten może 
stanowić podstawę dla symulacji cyfrowej jedno-, lub wielonapędowych maszyn wibracyjnych używanych 
w przemyśle. Pozwala on na badanie zarówno pracy ustalonej tych maszyn jak i ich stanów przejściowych 
oraz na badanie zaawansowanych problemów synchronizacji swobodnej napędów.

Słowa kluczowe: maszyny wibracyjne ograniczonej mocy, drgania w ruchu ogólnym, samosynchroni-
zacja, stany przejściowe

1. Introduction

Vibratory machines, such as vibrating screens (Banaszewski, 1990) and vibratory conveyors 
(Czubak, 1964) used in mining industry, shake out grids used for casting knocking out and vibrat-
ing tables used in building industry for compacting and forming concrete mixtures (Michalczyk, 
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1995), constitute usually solid bodies placed on systems of elastic elements, excited for vibrations 
by means of unbalanced masses driven be electric motors. 

Despite the simplicity of construction these systems are very complicated objects of analysis, 
among others, in consideration of a strongly non-linear character of effects occurring there.

From among the non-linear effects the basic ones are:
– strong influence of forced vibrations of the machine frame on running of inertial vibrators, 

deciding on the time-history of transient processes and on obtaining the self-synchronisa-
tion of vibrators, 

– occurrence of gyroscopic effects and Euler’s couplings in between individual components 
of the machine angular motion,

– strong dependence of the horizontal stiffness of the elastic support system on the vertical 
load of elastic elements.

The last of the mentioned factors is not usually a problem, since vibrations occur in the 
vicinity of the static balance and the elastic characteristics can be linearised near this position 
(Michalczyk, 1995; Rivin, 2003).

Making allowances for gyroscopic effects also does not cause difficulties in practice, e.g. 
(Sokołowska, 1999).

The fact of dependence of the unbalance rotor running on vibrations of the oscillator driven 
by this rotor, noticed by Sommerfeld, was several times analysed in references. The basic and 
survey works dealing with this problem are e.g. (Kononienko, 1964; Blechman ,1994; Ławendel, 
1981). Newer works, such as e.g. (Fidlin, 2006) are either based on classic works or do not under-
take such problems (Brown, 2002). A common feature of the majority of these works is limiting 
the analysis to various systems of only one degree of freedom. In relation to systems of several 
degrees of freedom the description is limited to the formulation of the general form of equations of 
motion and does not provide the method of the determination of vibratory moments in case of the 
unbalanced rotor mounted to the machine frame performing the general motion e.g. (Blechman, 
1994). This does not create the possibility of building effective simulation models for investigating 
e.g. the transient resonance effect or the advanced problems of self-synchronisation of drives. 

As it is known from the transient resonance investigations (Michalczyk, 2012a) or the 
advanced self-synchronisation problems (Michalczyk, 2012b), basing on models, which are not 
taking into account this effect, leads to the results completely useless in practice.

The aim of this study is preparing the grounds for creation the mathematical models of 
vibratory machines in general motion, with taking into account the limited power of the driving 
motor, allowing for effective investigations of the advanced self-synchronisation problems and 
transient resonance by means of the digital simulation. 

2. Equations of natural vibrations of the machine frame

Let us consider the machine frame as a solid body of 6 degrees of freedom, described in the 
absolute co-ordinate system Oxyz, which centre O overlaps in the static equilibrium state with 
the machine mass centre S and axis z is vertical. Let the co-ordinates of the points of fastening 
elastic elements to the frame in the static equilibrium state are xj, yj, zj, and their coefficients of 
elasticity kxj, kyj, kzj and viscous damping ratio bxj, byj, bzj, generally different, were determined 
by the linearisation around the static equilibrium position, j = 1...κ.
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As can be easily proved, for small displacements of the frame the approximate relations oc-
cur in between co-ordinates of the reaction elasticity forces Pj of the j th element and the machine 
frame co-ordinates:

 Pxj = –kxj (xs + φy zj – φz yj)
 Pyj = –kyj (ys + φz xj – φx zj) (1)
 Pzj = –kzj (zs + φx yj – φy xj)

where: xs, ys, zs and φx, φy, φz denote small displacements of the mass centre S in the absolute 
system xyz, and small angles of rotation of the solid body with respect of the axes of this system, 
respectively. 

Moments of these reactions with respect to the frame mass centre S is determined by the 
dependence:

 

j j j

xj yj zj

i j k

M x y z

P P P

�  (2)

where: i
–
, j
–
, k

–
 – versors of the axes: x, y, z.

From there:

 Mx = yj Pzj – zj Pyj

 My = zj Pxj – xj Pzj (3)
 Mz = xj Pyj – yj Pxj

Fig. 1. Calculation model of vibratory machine
where: kxj, kyj, kzj – coefficients of elasticity, bxj, byj, bzj – viscous damping ratios, 

S – machine body mass centre, C – mass centre of unbalanced mass of vibrator, Ω – pivoting point of vibrator, 
xs, ys, zs, φx, φy, φz – generalized coordinates of machine body with respect to the absolute coordinate system
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Dependences (1) and (3) after summing with respect of j = 1...κ, are describing the elasticity 
matrix K in the general case. 

If for each elastic element: kxj = kyj = kxyj, the matrix K is of a form: 
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2 2
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0 0

0

xyj xyj j xyj j

xyj xyj j xyj j

zj zj j zj j

zj j xyj j zj j j xyj j j

zj j xyj j xyj j j

xyj j xyj j

k k z k y

k k z k x

k k y k x

k y k z k x y k x z

sym. k x k z k y z

k x k y

� � �� �
�� �� � �
�� � ��
�

� � � �� �� �
�� � � ��
�

� � � �

�
�
�
�
�
�
�
�
�	 


K =  (4)

The viscous damping matrix B can be determined, in the simplest way, when assuming the 
model of the material damping for elastic elements (Michalczyk & Cieplok, 1999).

 In this model the ratio of the energy loss for the period of steady state vibrations ΔL, to the 
potential energy maximum value U in a deformation cycle – is assumed as a constant:

 
L

U

�
� = const=  (5)

Equating the energy loss for the vibration period with amplitude qmax and frequency ω of 
the linear system with damping coefficient b – with the loss in a system with material damping 
determined in (5) – we obtain:

 
2 2

max max

1

2
q b kq � = � �  (6)

Thus, the equivalent coefficient (in a sense of energy losses for a period) of viscous damp-
ing equals:

 2

k
b

�

�
=  (7)

Generalising the above for the system of several degrees of freedom, in which the individual 
elastic elements are made from the same material of the material damping coefficient Ψ, vibrating 
with frequency ω, it is possible to present the damping matrix as the matrix of the proportional 
damping:

 
B =

2�
�

K (8)

In order to take into account a structural damping, dominating in the case of e.g. coil springs, 
coefficient Ψ determined for the sum of material and structural damping, should be introduced 
into (8) (Michalczyk, 1995).
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The inertia matrix in a general case, when axes of the system xyz – in the static equilibrium 
state – do not coincide with the main central solid body inertia axes, is of the form:

 

M =

0 0 0 0 0

0 0 0 0

0 0 0

.
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zz

m
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 (9)

Thus, the equation of natural vibrations can be written in the following form:

 Mq.. + Bq. + Kq = 0 (10) 

where 

 q = col{xs, ys, zs, φx, φy, φz} (11)

3. Equations of forced vibrations of the machine frame, 
at forces a priori given

Let us presently consider the problem of a vibratory machine motion with an inertial drive, 
which means taking into account the vector of forces exciting the machine frame by means of 
the inertial vibrators – unbalanced statically or dynamically – attached to the frame. 

We will assume for the moment, that the vibrators running is not disturbed by frame vi-
brations, which can be accepted e.g. in the analysis of a steady motion outside the resonance 
zone.

In such case the linearised equation of motion will take the form:

 Mq.. + (B + G)q. + Kq = Q (12)

where vector Q describes components of inertial forces (centrifugal and tangent) and moments 
from forces originated from unbalanced vibrators, exciting system vibrations. Matrix G takes 
into account the gyroscopic influences. The way of constructing this matrix will be explained 
on the example of the typical inertial vibrator. 

As usual , the inertial vibrator component elements can be divided into two kinds (Banasze-
wski, 1990; Michalczyk, 1995):

– balanced, axially-symmetrical with respect of the axis of rotation,
– unbalanced, of a plane of symmetry perpendicular to the axis of rotation.

Let us name the point, being the intersection of the plane – perpendicular to the axis of 
rotation and passing via the mass centre of the given i th element – with the axis of rotation, as 
the ‘rotation point’ Ωi.
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Calculating the angular momentum of individual i th component originated from rotations of 
a ’fast’ angular velocity ω–o, we will assume for each of them the absolute reference system: ξiηiζi 
of the beginning in its rotation point Ωi and axis ζi directed along the axis of rotation, compatibly 
with the direction of angular velocity of all elements ω–o. Since each element is of a symmetry 
allowing the zeroing of deviation moments Jiζξ and Jiζη, and the angular velocity of a fast rotation 
ω–o has a component only along axis ζi, the angular momentum of the i th element with respect of 
its centre of rotation lies on axis ζi and is equal to: K–i = Jiζζ · ω–o .

If the angular velocity of the ‘slow’ rotation resulting from the machine frame motion will 
be marked ω–(ωx, ωy, ωz), the gyroscopic moment, with which the analysed rotor influences the 
machine frame, can be written as:

 i o i o i o

d
M K J J J

dt
�� ��� � � � � �� �� � �� � � � �� � � ���  (13)

where Jζζ denotes the moment of inertia of the whole vibrator with respect of its axis of rotation, 
while the rotational speed ω–o is treated as a constant value.

Dependence (13) can be for analysed vibrator presented in the form:
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x y z

i j k

M J�� � � �
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�  (14)

or, after the determinant expansion, in the form:

 Mx = Jζζ (ωoyωz – ωozωy)
 My = Jζζ (ωozωx – ωoxωz) (15)
 Mz = Jζζ (ωoxωy – ωoyωx)

On this basis the matrix G in (12) can be written for single vibrator as:
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 (16)

where Jζζ – moment of inertia of the whole vibrator with respect of its axis of rotation.

Vector Q, should be determined only for unbalanced elements of a vibrator, on the basis of 
forces of inertia of these elements resulting from their angular motion (steady or accelerated). 
Rotating vectors of these normal and tangential forces of inertia should be applied in their points 
of rotation. 
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Components of vector Q constitute projections of these forces on the axis of the system xyz, 
and their moments with respect of the axis, when the influence of the body displacing is omitted for 
the simplification. The determination of these components by classic methods is usually easy.

It should be mentioned that matrix of the system masses M should be calculated with tak-
ing into account vibrators, while masses of unbalanced elements must be concentrated in their 
rotation points.

In case when the vibrators driving motors are attached to the machine frame, not to a separate 
foundation, vector Q should be supplemented – by being on the axis ζ – moments M

—
ζ  resulting 

from the change of the vibrator rotational speed:

 
( )o o o

d d
M J J J

dt dt
� �� �� ��� � �� � � � � �  (17)

Analysis of dependencies (13) and (17) leads to conclusion that in two-drive systems, of 
identical counter rotating vibrators, gyroscopic moments as well as moments resulting from the 
change of the rotors rotational speed, are mutually zeroing, which allows not taking into account 
these effects in equations (12).

Thus, equations (12) do not take into account the influence of vibrations of vibrators axes, 
(originated due to the machine frame motion) on vibrators running. 

4. Dynamic equations of motion taking into account 
the influence of frame vibrations on running of unbalanced 
rotors

Equations of motion (12) should be presently interpreted differently, assuming that the 
time-history of angular velocity ω–o and angular acceleration ε–o of a ‘fast’ motion of individual 
rotors is not given a priori in vector Q, but results from solving the additional dynamic equations 
of angular motion. 

Additional equations of angular motion for each unbalanced rotor can be written in the form 
of Euler’s equation, assuming the life-axes system Cξηζ, related to the main central inertial axes 
of the investigated rotor. Instantaneously we assume, that one of these axes, e.g. ζ is parallel to 
the rotor axis of rotation, (which occurs for rotors of static unbalancing e.g. inertial vibrators of 
a ’force’ type). Then:

 Jςω
.
ς – ωηωξ (Jη – Jξ) = Mς (18)

where:
 Jξ, Jη, Jζ — main, central moments of inertia of the rotor,
 ως = ωo — ‘fast’ rotational speed of the rotor, while
 ωξ, ωη — projections of the machine frame angular velocity on the life-axis system,
 Mς — sum of driving, anti-torque moment and a moment with respect of axis ζ, originated 

from a reaction in rotor bearings.

Reaction forces in individual bearings, as concurrent force system, can be presented in a form 
of a sum of the axial components and a component in the plane perpendicular to the axis of rota-
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tion, while the axial components do not give any moment with respect of axis ζ. The remaining 
components can be reduced to the ‘rotation point’ Ω (intersection point of the rotor axis of rotation 
with the rotation plane of the rotor mass centre C), obtaining a resultant force perpendicular to 
the rotor axis and a couple of forces of a moment vector being in the plane perpendicular to the 
rotor axis. Thus, these couple does not give the moment with respect of axis ζ and the moment 
with respect of this axis is originated solely from the resultant force. This resultant force of the 
bearings reaction (sum of axial and radial components) originates from the rotor inertial forces 
system. These forces are generated by components of acceleration of the rotor mass centre C: 
Coriolis and relative acceleration.

The Coriolis inertial force, as perpendicular to the relative velocity vector, lies in the plane 
passing via the axis of rotation and axis ζ, thus the bearing reaction originated from it also lies 
in this plane not giving any moment with respect of axis ζ.

The rotor dynamic influence being the result of its relative motion consists of a radial force, 
which does not give a moment – with respect of axis ζ passing via the rotor mass centre C – and 
of a tangent force, from which the bearing reaction gives – with respect of axis ζ – a moment 
of a value:

 Mς(τ) = –mne2εo (19)

where:
 mn — rotor mass,
 e — rotor unbalanced radius,

o
o

d

dt

�
� �

 
.

Taking into account the components – described above – equation (18) can be presented 
in the form:

 Jςω
.

o – ωηωξ (Jη – Jξ) = –mne2ω. o + Mς (u) + Mn – Mo (20)

where: ωη, ωξ – originate from the machine frame angular motion and constitute angular velocity 
functions φ.x, φ

.
y, φ

.
z, while Mς (u) denotes a moment with respect of axis ζ from bearing reaction 

generated by the force of transportation inertia, Mn and Mo – driving and anti-torque moments 
– respectively, applied to the rotor, usually dependent on ωo(t).

Determination of Mς (u) will be carried out in the following way:
a) Vectors will be marked: O—S = r–, S—Ω = R–, where vector R– determines the approximate 

(averaged for the rotor motion period) location – with respect of the machine mass centre 
S- of the point performing the transportation motion. R– is a function of φx, φy, φz, while 
r– is defined by xs, ys, zs.

b) Then, the approximate absolute position of the point performing the transportation mo-
tion of the rotor mass centre C is determined by a sum:

 O—C ≅ r– + R– (21)

c) Differentiating two times sum (21) versus time the transportation acceleration of point C 
can be obtained. The second derivative of the first component determines acceleration 
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of the machine mass centre in system Oxyz, while the acceleration resulting from the 
change of R– constitutes the sum of the rotational and centrifugal accelerations in rotation 
about S–.

Low values of the machine frame angular velocity (resulting from very small angles of rota-
tion of the frame, of the order 10–3) usually allow to omit the centrifugal acceleration. In such case 
the dependence, determining transportation acceleration a–u, obtains the approximate form:

 

u s s sa ix jy kz R�� � � � � x y z

i j k

x y z

� � �

� � �

.. .. ..
s s six jy kz� � � �.. .. .. .. .. ..

 (22)

where i
–
, j
–
, k
–
 mark system versors: Oxyz, ε– is the frame angular acceleration in its rotation about 

mass centre S while xΩ, yΩ, zΩ are point Ω coordinates in the system Oxyz determined in the static 
balance point of the machine frame.

d) Bearing reaction to the force of transportation inertia equals:

 P–(u) = mn · a–u (23)

e) In order to calculate the moment of this reaction with respect of axis ζ, let us determine 
versor n– being simultaneously perpendicular to axis ζ and rotating vector Ω—C = e–(φo):

 
( ) o

o
o

e
n

e

�
�

�
� �  (24)

where the vector ω–o direction, approximately constant, corresponding to the position of 
the frame static balance, was assumed while by φo(t) the angle – determining the rotor 
rotation with respect of the selected initial position – was marked. 

That time the moment from reaction P–(u) with respect of axis ς||ω–o equals:

 Mς (u) = –e · P–(u) · n– (25)

Equation (20) can be written in a simpler form, using the dependence:

 Jς  + mne2 = Jo (26)

where Jo constitutes the rotor moment of inertia with respect of its axis of rotation (see comment 
below), and omitting the angular velocities product ωηωξ as being very small:

 Joω
.
o = Mς (u) + Mn – Mo (27)

As it can be seen from this form, the rotor is moving under an influence of the driving and 
anti-torque moments as well as the moment being the bearing reaction to the force of transporta-
tion inertia.

 This last component, often of a value dominating at circum-resonant states, occurs due 
to the rotor axes vibrations related to the frame motion and can be determined on the bases of 
equations (22) to (25).
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Comment

In the case when the motor rotor does not constitute the integral whole with the unbalanced 
rotor and was not taken into account at the determination of Jo, the reduced moment of the motor 
rotor and other rotating power transmission elements should be counted in to the value of Jo. 

It should be also remembered that driving and anti-torque moments exerted to the rotor are 
related to applying the opposite moments to carrying bodies and if this is the machine frame 
they should be applied to it. 

In the case of rotors balanced statically but not dynamically or in a general unbalancing case 
equation (27) is valid, however, the rotor should be divided into two elements (or in case of need 
into more) for which the main central axis parallelism to the axis of rotation can be assumed. 
The moment of inertia Jo and the moment from forces of transportation inertia Mς (u) constitute 
then sums of the respective expressions for each of this mass. 

5. Conclusions

The mathematical model of the over-resonant vibratory machine driven in a general motion 
by the inertial vibrator of a limited power, was formulated in the study. This model can constitute 
the basis for the digital simulation of single- or multi-drive vibratory machines used in industry. 
It allows to investigate their steady and transient states as well as to investigate the advanced 
problems of the free synchronisation of drives. 
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