PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance Analysis of Multi-Point Incremental Forming Tool using Martensitic AISI 420 Sheet Metals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Incremental Sheet metal Forming (ISF) Process is a suitable process which helps to produce various parts used in automotive sector by rapid prototyping. This method of producing a prototype helps industry in reducing the production cost. In ISF process, a final product is evolved through local deformation of the sheet metal made by the tool. Usually better formability is obtained when the tool makes a better contact with the sheet metal throughout the process. Improved formability elevates dimensional accuracy of the product, thus increases the market value of the product. A new tool with multiple ball ends capable of making multiple mating points over sheet metal was used in this research to enhance the efficiency of formability and surface finish. Ability of the new Multi-Point Incremental Forming Tool (MPIF) was investigated and compared to the existing Single Point Forming Tool (SPIF) based on the formability and surface finish. Forming Limit Diagram (FLD), Strain Distribution (SD) and Scanning Electron Microscope (SEM) were used to examine the formability of the sheet metal. The SEM & 3D-Surface roughness profilometer were used to observe the sheet metals surface finish. In addition to these experimental techniques a simulation results were also used to predict the stress and strain rate during forming process. The experimentation and simulation outcome shows that the MPIF provides superior formability and surface finish.
Twórcy
  • Department of Mechanical Engineering, Dhanalakshmi Srinivasan University, Tiruchirappalli, Tamil Nadu, India
  • Department of Production Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu, India
  • Department of Production Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu, India
  • Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai
Bibliografia
  • [1] F. Feng, J. Li, R. Chen, L. Huang, H. Su, S. Fan, Multi-point die electromagnetic incremental forming for large-sized sheet metals. J. Manuf. Process. 62, 458-470 (2021).
  • [2] P. Chinnaiyan, A.K. Jeevanantham, Multi-objective optimization of single point incremental sheet forming of AA5052 using Taguchi based grey relational analysis coupled with principal component analysis. Int. J. Precis. Eng. Manuf. 15, 2309-2316 (2014).
  • [3] M. Durante, A. Formisano, A. Langella, Observations on the Influence of Tool-Sheet Contact Conditions on an Incremental Forming Process. J. Mater. Eng. Perform. 20, 941-946 (2011).
  • [4] M. Murugesan, D.W Jung, Formability and Failure Evaluation of AA3003-H18 Sheets in Single-Point Incremental Forming Process through the Design of Experiments. Materials 14, 808 (2021).
  • [5] H. Ren, J. Xie, S. Liao, D. Leem, K. Ehmann, J. Cao, In-situ springback compensation in incremental sheet forming. CIRP Ann. Manuf. Technol. 68, 317-320 (2019).
  • [6] H. Wei, L. Zhou, B. Heidarshenas, I.K. Ashraf, C. Han, Investigation on the influence of springback on precision of symmetric cone-like parts in sheet metal incremental forming process. Int. J. Lightweight Mater. Manuf. 2 (2), 140-145 (2019).
  • [7] F. Maqbool, M. Bambach, Dominant deformation mechanisms in single point incremental forming (SPIF) and their effect on geometrical accuracy. Int. J. Mech. Sci. 136, 279-292 (2018).
  • [8] Z. Chang, J. Chen, Mechanism of the twisting in incremental sheet forming process. J. Mater. Process Tech. 276, 116396 (2020).
  • [9] A. Fiorentino, C. Giardini, E. Ceretti, Application of artificial cognitive system to incremental sheet forming machine tools for part precision improvement. Precis. Eng. 39, 167-172 (2015).
  • [10] L. Ben Said, J. Mars, M. Wali, F, Dammak, Effects of the tool path strategies on incremental sheet metal forming process. Mech. Ind. 17 (4), 411 (2016).
  • [11] S.A. Singh, S. Priyadarshi, P. Tandon, Exploration of Appropriate Tool Material and Lubricant for Elevated Temperature Incremental Forming of Aluminium Alloy. Int. J. Precis. Eng. Manuf. 22, 217-225, (2021).
  • [12] L. Kilani, T. Mabrouki, M. Ayadi, H. Chermiti, S. Belhadi, Effects of rolling ball tool parameters on roughness, sheet thinning, and forming force generated during SPIF process,. Int. J. Adv. Manuf. Technol. 106, 4123-4142 (2020).
  • [13] T.J. Grimm, R. Ihab, J.T. Roth, A Novel Modification to the Incremental Forming Process, Part 2: Validation of the Multi-directional Tooling Method. Procedia Manuf. 10, 520-530 (2017).
  • [14] B. Lu, Y. Fang, D.K. Xu, J. Chen, H. Ou, N.H. Moser, J. Cao, Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. Int. J. Mach. Tools. Manuf. 85, 14-29 (2014).
  • [15] L. Bensaid, J. Mars, M. Wali, F. Dammak, Numerical prediction of the ductile damage in single point incremental forming process. Int. J. Mech. Sci. 131-132, 546-558 (2017).
  • [16] A.N. Isfahany, H. Saghafian, G. Borhani, The effect of heat treatment on mechanical properties and corrosion behavior of AISI 420 martensitic stainless steel. J. Alloys Compd. 509, 3931-3936 (2011).
  • [17] S.H. Baghjari, S.A.A. Akbari Mousavi, Effects of pulsed Nd:YAG laser welding parameters and subsequent post-weld heat treatment on microstructure and hardness of AISI 420 stainless steel. Mater. Des. 43, 1-9 (2013).
  • [18] Z. Zhang, T. Yu, R. Kovacevic, Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC. Appl. Surf. Sci. 410, 225-240 (2017).
  • [19] C. Raju, C. Sathiya Narayanan, FLD and Fractography analysis of multiple sheet single point incremental forming. Trans. Indian. Inst. Metals 69, 1237-1243 (2016).
  • [20] S. Gatea, B. Lu, J. Chen, H. Ou, G. McCartney, Investigation of the effect of forming parameters in incremental sheet forming using a micromechanics based damage model. Int. J. Mater. Form. 12, 553-574 (2019).
  • [21] R. Narayanasamy, C. Sathiya Narayanan, Evaluation of limiting strains and strain distribution for interstitial free steel sheets while forming under different strain conditions. Mater. Des. 28, 1555-1576 (2007).
  • [22] N.E. Dowling, Mechanical Behavior of Materials (4th Edition), 2013, Pearson Education Limited.
  • [23] G. Yoganjaneyulu, C. Sathiya Narayanan, R. Narayanasamy, Investigation on the fracture behavior of titanium grade 2 sheets by sing the single point incremental forming process. J. Manuf. Process. 35, 197-204 (2018).
  • [24] M. Durante, A. Formisano, A. Langella, F.M.C Minutolo, The influence of tool rotation on an incremental forming process. J. Mater. Process Technol. 209 (9), 4621-4626 (2009).
  • [25] R. Azhiri, F. Rahimidehgolan, F. Javidpour, R.M. Tekiyeh, S.M. Moussavifard, A.S. Bideskan, Optimization of Single Point Incremental Forming Process Using Ball Nose Tool. Exp. Tech. 44, 75-84 (2020).
  • [26] L. Ben Said, A. Bouhamed, M. Wali, B. Ayadi, S.A. Betrouni, H. Hajji, F. Dammak, SPIF Manufacture of a Dome Part Made of AA1060-H14 Aluminum Alloy Using CNC Lathe Machine: Numerical and Experimental Investigations. Arab. J. Sci. Eng. 46, 12207-12220 (2021).
  • [27] A. Mulay, B. Satish Ben, S. Ismail, A. Kocanda, Experimental Investigation and Modeling of Single Point Incremental Forming for AA5052-H32 Aluminum Alloy. Arab. J. Sci. Eng. 42 (11), 4929-4940 (2017).
  • [28] S. Wu, P. Geng, N. Ma, F. Lu, Contact-induced vibration tool in incremental sheet forming for formability improvement of aluminum sheets. J. Mater. Res. Technol. 17, 1363-1379 (2022).
  • [29] A. Bovas Herbert Bejaxhin, G. Paulraj, M. Prabhakar, Inspection of casting defects and grain boundary strengthening on stressed Al6061 specimen by NDT method and SEM micrographs. J. Mater. Res. Technol. 8, 2674-2684 (2019).
  • [30] A. Bovas Herbert Bejaxhin, G. Paulraj, Effect of optimised cutting constraints by AlCrN/epoxy coated components on surface roughness in CNC milling. Int. J. Rapid. Manuf. 8, 397-417 (2019).
  • [31] A. Bovas Herbert Bejaxhin, G. Paulraj, Experimental investigation of vibration intensities of CNC machining centre by microphone signals with the effect of TiN/epoxy coated tool holder. J. Mech. Sci. Technol. 33 (3), 1321-1331 (2019).
  • [32] P. Sureshkumar, T. Jagadeesha, L. Natrayan, M. Ravichadran, Dhinakaran Veeman, S.M. Muthu, Electrochemical corrosion and tribological behaviour of AA6063/Si3N4/Cu (NO3)2 Composite processed using single-pass ECAPA route with 120° die angle. J. Mater. Res. Technol. 16, 715-733 (2022).
  • [33] G. Yoganjaneyulu, C. Sathiya Narayanan, A comparison of fracture limit analysis on titanium grade 2 and titanium grade 4 sheets during single point incremental forming. J. Fail. Anal. Prev. 19, 1286-1296 (2019).
  • [34] V. Panahizadeh, M. Hoseinpour, E. Gholamzadeh, M. Davoudi, Y. Dadgar Asl, theoretical and experimental study of FlDs of AA5083 sheet and investigation of advanced anisotropic yield criteria coefficients. J. Braz. Soc. Mech. Sci. Eng. 44, 356 (2022).
  • [35] M.B. Silva, P.S. Nielsen, N. Bay, P.A.F. Martins, Failure Mechanisms in Single Point Incremental Forming of Metals. J. Adv. Manuf. Technol. 56, 893-903 (2011).
  • [36] M.B. Silva, M. Skjoedt, A.G. Atkins, N. Bay, P.A.F Martins, Single Point Incremental Forming & Formability/Failure Diagrams. J. Strain Anal. Eng. Des. 43, 15-36 (2008).
  • [37] C.V. Nielsen, P.A.F Martins, Finite element simulation: A user’s perspective. In: Metal Forming: Formability, Simulation and Tool Design, 2021, Academic Press, London.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c184a3ca-c417-4adc-bfea-96808869695b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.