PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A convolutional neural network machine learning based navigation of underwater vehicles under limited communication

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes navigation of multiple autonomous underwater vehicles (AUVs) by employing machine learning approach for wide area surveys in underwater environment. Wide area survey in underwater environment is affected by low data rate. We consider two AUVs moving in formation through clustering followed by selection of optimal path that is affected by low data rate and limited acoustical underwater communication. A state compression approach using machine learning based acoustical localization and communication (ML-ALOC) is proposed to overcome the low data rate issue in which AUV states are approximated by Hierarchical clustering followed by an optimal selection approach using Convolutional Neural Network (CNN). The performance of the proposed state compression algorithm is compared with particle state compression algorithm based on K-Means clustering at each iteration followed by Akaike information criterion (AIC) pursuing extensive simulations, in which two AUVs navigate through trajectory. It is observed from the simulations that the proposed ML-ALOC system provides better estimates when compared with acoustical localization and communication (ALOC) system using particle clustering for state compression scheme.
Rocznik
Strony
537--568
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wzory
Twórcy
  • Department of Electrical Engineering, VSS University of Technology, Burla, India
  • Department of Electrical Engineering, VSS University of Technology, Burla, India
  • Department of Electronics and Telecommunication Engineering, VSSUT Burla, Odisha, India
  • Department of Electronics and Communication Engineering, CUPGS, BPUT, Rourkela, Odisha, India
Bibliografia
  • [1] B. Bingham, B. Foley, H. Singh, R. Camilli, K. Delaporta, R. Eustice, A. Mallios, D. Mindell, C. Roman and D. Sakellariou: Robotic tools for deep water archaeology: Surveying an ancient shipwreck with an autonomous underwater vehicle. Journal of Field Robotics, 27(6), (2010), 702-717. DOI: 10.1002/rob.20350
  • [2] A.J. Plueddemann, A.L. Kukulya, R. Stokey and L. Freitag: Autonomous underwater vehicle operations beneath coastal sea ice. IEEE/ASME Transactions of Mechatronics, 17(1), (2012), 54-64. DOI: 10.1109/TMECH.2011.2174798
  • [3] B.A. Hodges and D.M. Fratantoni: AUV observations of the diurnal surface layer in the north Atlantic salinity maximum. Journal of Physical Oceanography, 44(6), (2014), 1595-1604. DOI: 10.1175/JPO-D-13-0140.1
  • [4] P. Drap, J, Seinturier, B. Hijazi, D. Merad, J-M. Boi, B. Chemisky, E. Seguin and L. Long: The ROV 3D project: Deep-sea underwater survey using photogrammetry: Applications for underwater archaeology. Journal on Computing and Cultural Heritage, 8(4), (2015), 1-24. DOI: 10.1145/2757283
  • [5] M.R. Khan, B. Das and B.B. Pati: Channel estimation strategies for underwater acoustic (UWA) communication: An overview. Journal of the Franklin Institute, 357(11), (2020), 7229-7265. DOI: 10.1016/j.jfranklin.2020.04.002
  • [6] B. Das, B. Subudhi and B.B. Pati: Adaptive sliding mode formation control of multiple underwater robots. Archives of Control Sciences, 24(4), (2014), 515-543. DOI: 10.2478%2Facsc-2014-0028
  • [7] B. Das, B. Subudhi and B.B. Pati: Cooperative formation control of autonomous under-water vehicles: An overview. International Journal of Automation and Computing, 13(3), (2016), 199-225. DOI: 10.1007/s11633-016-1004-4
  • [8] X. Kang, H. Xu and X. Feng: Fuzzy logic based behavior fusion for multi-AUV formation keeping in uncertain ocean environment. Oceans 2009, (2009), 1-7. DOI: 10.23919/OCEANS.2009.5422361
  • [9] T. Maki, T. Matsuda, T. Sakamaki, T. Ura and J. Kojima: Navigation method for underwater vehicles based on mutual acoustical positioning with a single seafloor station. IEEE Journal of Oceanic Engineering, 38(1), (2013), 167-177. DOI: 10.1109/ JOE. 2012.2210799
  • [10] T. Matsuda, T. Maki, T. Sakamaki and T. Ura: State estimation and compression method for the navigation of multiple autonomous underwater vehicles with limited communication traffic. IEEE Journal of Oceanic Engineering, 40(2), (2015), 337-348. DOI: 10.1109/JOE.2014.2323492
  • [11] J. Zhang, W. Li, S. Kang, J. Yu and S. Chen: Assigning multiple AUVs to form arrays under communication range limitations based on the element zero method. IEEE Systems Journal, 15(2), (2021), 1664-1673. DOI: 10.1109/JSYST.2020.3011833
  • [12] L. Dong, H. Xu, X. Feng, X. Han and C. u: An adaptive target tracking algorithm based on EKF for AUV with unknown non-gaussian process noise. Applied Sciences, 10(10), (2020). DOI: 10.3390/app10103413
  • [13] T. Yan, Z. Xu and S.X. Yang: Consensus formation tracking for multiple AUV systems using distributed bioinspired sliding mode control. IEEE Transactions on Intelligent Vehicles, 8(2), (2023), 1081-1-092. DOI: 10.1109/TIV.2022.3175647
  • [14] S.P. Sahoo, B. Das, B.B. Pati, F.P.G. Marquez and I.S. Ramirez: Hybrid path planning using a bionic-inspired optimization algorithm for autonomous underwater vehicles. Journal of Marine Science and Engineering, 11(4), (2023), 11-17. DOI: 10.3390/jmse11040761
  • [15] T. Matsuda, T. Maki, T. Sakamaki and T. Ura: Performance analysis on a navigation method of multiple AUVs for wide area survey. Marine Technology Society Journal, 46(2), (2012), 45-55. DOI: 10.4031/MTSJ.46.2.6
  • [16] S. Mangione, G.E. Galioto, D. Croce, I. Tinnirello and C. Petrioli: A channel-aware adaptive modem for underwater acoustic communications. IEEE Access, 9 (2021), 76340-76353. DOI: 10.1109/ACCESS.2021.3082766
  • [17] Z. Jia, W. Zheng and F. Yuan: A two-dimensional chirp-MFCSK modulation method for underwater LoRa system. IEEE Internet of Things Journal, 9(23), (2022), 24388-24397. DOI: 10.1109/JIOT.2022.3188755
  • [18] O. Akman, T. Comar, D. Hrozencik and J. Gonzales: Chapter 11 - Data clustering and self-organizing maps in biology. A volume in MSE/Mathematics in Science and Engineering: Algebraic and Combinatorial Computational Biology, 2019, 351-374. DOI: 10.1016/B978-0-12-814066-6.00011-8
  • [19] S. Al-Dabooni and D. Wunsch: Model order reduction based on agglomerative hierarchical clustering. IEEE Transactions on Neural Networks and Learning Systems, 30(6), (2019), 1881-1895. DOI: 10.1109/TNNLS.2018.2873196
  • [20] S. Indolia, A.K. Goswami, S. Mishra and P. Asopa: Conceptual understanding of convolutional neural network-a deep learning approach. Procedia Computer Science, 132 (2018), 679-688. DOI: 10.1016/j.procs.2018.05.069
  • [21] A. Habib, C. Karmakar and J. Yearwood: Interpretability and optimisation of convolutional neural networks based on sinc-convolution. IEEE Journal of Biomedical and Health Informatics, 27(4), (2023), 1758-1769. DOI: 10.1109/JBHI.2022.3185290
  • [22] M. Miron-Morin, D.R. Barclay and J.-F. Bousquet: The oceanographic sensitivity of the acoustic channel in shallow water. textitIEEE Journal of Oceanic Engineering, 46(2), (2021), 675-686. DOI: 10.1109/JOE.2020.2997215
  • [23] S.P. Sahoo, B. Das and B.B. Pati: Path planning of AUV swarms using a bio-inspired multi-agent Ssystem. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 20(3), (2022), 315-328. DOI: 10.37936/ecti-eec.2022203.247509
  • [24] S.P. Sahoo, B. Das and B.B. Pati: Path planning of bio-inspired swarm of AUVs using distributed path consensus algorithm. Journal of Engineering Science & Technology Review, 14(5), (2021), 173-179. DOI: 10.25103/jestr.145.20
Uwagi
This work is supported by IIT Guwahati Technology Innovation and Development Foundation (IITG TI&DF), which has been set up at IIT Guwahati as a part of the National Mission on Interdisciplinary Cyber Physical Systems (NMICPS), with the financial assistance from Department of Science and Technology, India through grant number DST/NMICPS/TIH12/IITG/2020. Authors gratefully acknowledge the support provided for the present work.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c180cf13-8816-446a-b402-cc0203d15256
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.