PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Investigations of Taylor-Couette Flow Using DNS/SVV Method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the authors present the results obtained during a numerical investigation (Direct Numerical Simulation/ Spectral Vanishing Viscosity method – DNS/SVV) of a Taylor-Couette flow, i.e. the flow between two concentric disks and two concentric cylinders. The Taylor-Couette flow is one of paradigmatical systems in hydrodynamics, widely used for studying the primary instability, pattern formation, transitional flows and fully turbulent flows. Simultaneously, the flows in rotating cavities appear in numerous machines in the field of mechanics and chemistry, e.g., in cooling systems of gas turbines and axial compressors. In the paper, attention is focused on the laminar-turbulent transition region of the Taylor-Couette flow. The main purpose of the computations is to investigate the influence of different parameters (the aspect ratio, the end-wall boundary conditions, temperature gradient) on the flow structure and on flow characteristics.
Twórcy
  • Institute of Thermal Engineering, Poznań University of Technology Pozna´n, ul. Piotrowo3, 60-965 Poznań
  • Institute of Thermal Engineering, Poznań University of Technology Pozna´n, ul. Piotrowo3, 60-965 Poznań
Bibliografia
  • [1] K.T. Coughlin, P.S. Marcus, Modulated waves in Taylor-Couette flow Part 1. Analysis. J. Fluid Mech. 234, 1-18 (1992).
  • [2] D.P. Lathrop, J. Fineberg, H.L. Swinney, Transition to sheardriven turbulence in Couette-Taylor flow. Phys. Rev. A 46, 6390-6405 (1992).
  • [3] Ch. Egbers, G. Pfister, Physics of rotating fluids, Lecture Notes in Physics. Springer (2000).
  • [4] O. Czarny, E. Serre, P. Bontoux, R.M. Lueptow, Interaction of wavy cylindrical Couette flow with end-walls. Phys. Fluids 16, 1140-1148 (2004).
  • [5] S. Dong, Direct numerical simulation of turbulent Taylor-Couette flow. J. Fluid Mech. 587, 373 (2007).
  • [6] U. Harlander, G. Wright, Ch. Egbers, Reconstruction of the 3D flow field in a differentially heated rotating annulus laboratory experiment. Geophysical Research Abstracts 14 EGU2012-5368 (2012).
  • [7] H. Brauckmann, B. Eckhardt, Direct numerical simulations of local and global torque in Taylor-Couette fow up to Re D 30000. J. Fluid Mech 718, 398 (2013).
  • [8] W. Serre, J.P. Pulicani, A three dimensional pseudo-spectral method for convection in rotating cylinder. J. Computers & Fluids 30, 491 (2001).
  • [9] E. Tuliszka-Sznitko, A. Zieliński, W. Majchrowski, LES of the non-isothermal transition flow in rotating cavity, Int. J. Heat and Fluid Flow 30, 534 (2009).
  • [10] E. Tuliszka-Sznitko, A. Zieliński, W. Majchrowski, Large eddy simulation of non-isothermal flow in rotor/stator cavity. Proceedings of Int. Sym. On Heat Transfer in Gas Turbine Systems, Antalya, CD-ROM, pp.1-14, (2009).
  • [11] I.E. Tadmor, Convergence of spectral methods for nonlinear conservation laws. SIAM, J. Numerical Analysis, 26, 30 (1989).
  • [12] E. Severac, E. Serre, A spectral viscosity LES for the simulation of turbulent flows within rotating cavities. J. Comp. Phys. 226, 2, 1234 (2007).
  • [13] K. Kielczewski, E. Tuliszka-Sznitko, Numerical study of the flow structure and heat transfer in rotating cavity with and without jet. Arch. Mech. 65, 527 (2013).
  • [14] S. Sarra, Chebyshev Pseudospectral Methods for Conservation Laws with Source Terms and Application to Multiphase Flow. PhD Thesis, Morgantown, West Virginia (2002).
  • [15] K. Kiełczewski, E. Tuliszka-Sznitko, P. Bontoux, Numerical investigation of the Taylor-Couette and Batchelor flows with heat transfer: physics and numerical modeling. J. of Physics CS, 530, 1-8 (2014). Numerical Investigations of Taylor-Couette Flow Using DNS/SVV Method 219
  • [16] K.A. Cliffe, T. Mullin, A numerical and experimental study of anomalous modes in the Taylor experiment. J. Fluid Mech. 153, 243-258 (1985).
  • [17] B. Bansch, Ch. Egbers, O. Meincke, N. Scurtu, Taylor Couette System with Asymmetric Boundary Conditions. Universitat Bremen, Zentrum fur Thenomathematik, Report 0004 (2000).
  • [18] T. Mullin, C. Blohm, Bifurcation phenomena in a Taylor-Couette flow with asymmetric boundary conditions. Phys. Fluids 13, 136 (2001).
  • [19] J. Jeong, F. Hussain, On the identification of a vortex. J. Fluid Mech. 285, 69 (1995).
  • [20] P. Chakraborty, S. Balachandar, R.J. Adrian, On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 202 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c17f1a60-4edf-4883-8851-243d3262c418
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.