Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is focused on the design of a mobile wheeled platform able to move in uneven/ unstructured terrains and particularly intended for supporting the work in agriculture. An independent double wishbone suspension is chosen to obtain a light and compact structure. Furthermore, a semi-active suspension with magnetorheological dampers and the ability to change the track of wheels is proposed to minimize uncontrolled vertical movements of the platform. A dynamic model is formulated to carry out simulations including various obstacles and cases with constant/controlled damping coefficients. As a final result, a conceptual CAD model is built with selected motors and standardized parts.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
279--292
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Fundamentals of Machine Design and Mechatronic Systems, Wroclaw, Poland
autor
- Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Fundamentals of Machine Design and Mechatronic Systems, Wroclaw, Poland
Bibliografia
- 1. Ackerman E., 2015, Bosch’s Giant Robot Can Punch Weeds to Death, IEEE Spectrum, 0-1, https://spectrum.ieee.org/automaton/robotics/industrial-robots/bosch-deepfield-robotics-weed-control.
- 2. Blundell M., Harty D., 2004, Active systems [In:] The Multibody Systems Approach to Vehicle Dynamics, Elsevier, New York, 441-451.
- 3. Bruzzone L., Quaglia G., 2012, Review article: locomotion systems for ground mobile robots in unstructured environments, Mechanical Sciences, 3, 49-62.
- 4. Ceccarelli M., et al., 2017, Heritage bot service robot assisting in cultural heritage, First IEEE International Conference on Robotic Computing, 440-445.
- 5. Cholewa K., 2023, Design of a mobile platform for agricultural purposes (in Polish), Master Thesis, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland.
- 6. Chołodowski J., 2023, Modelling and experimental identification of spring-damping properties of the off-road vehicle rubber tracks, rubber belts, and rubber-bushed tracks subjected to flexural vibrations, Journal of Terramechanics, 110, 101-122.
- 7. Ecorobotix, 2019, Technology for environment: an innovative, autonomous and economical machine, https://www.ecorobotix.com/wpcontent/uploads/2017/02/ECOX FlyerPres18-EN-1 RVB-1.pdf.
- 8. Fischer D., Isermann R., 2003, Mechatronics Semi-Active and Active Vehicle Suspensions, Control Engineering Practice, 12, 11, 1353-1367.
- 9. Garimella S.S, Revzen S., 2021, Dandelion-Picking Legged Robot, arXiv:2112.05383.
- 10. Harrington B.D., Voorhees C., 2004, The challenges of designing the rocker-bogie suspension for the Mars exploration rover, Proceedings of the 37th Aerospace Mechanisms Symposium, 185-195.
- 11. Husti I., 2019, Possibilities of using robots in agriculture, Hungarian Agricultural Engineering, 35, 59-67.
- 12. Klockiewicz Z., Ślaski G., 2023, Comparison of vehicle suspension dynamic responses for simplified and advanced adjustable damper models with friction, hysteresis and actuation delay for different comfort-oriented control strategies, Acta Mechanica et Automatica, 17, 1, Special Issue “Machine Modeling and Simulations 2022”.
- 13. Mohd Yamin A., Ab Talib M.H., Mat Darus I.Z., Mohd Nor Nur S., 2022, Magneto-rheological (MR) damper – parametric modelling and experimental validation for LORD RD 8040-1, Jurnal Teknologi, 84, 2, 27-34.
- 14. Niu J., Wang H., Shi H., Pop N., Li D., Li S., Wu S., 2018, Study on structural modeling and kinematics analysis of a novel wheel-legged rescue robot, International Journal of Advanced Robotic Systems, 15, 1.
- 15. Olinski M., Ziemba J., 2014, Hybrid quadruped robot – mechanical design and gait modelling, [In:] New Advances in Mechanisms, Transmissions and Applications, Mechanisms and Machine Science, Petuya V., et al. (Eds.), 17, 183-190.
- 16. Raibert M.H., Blankespoor K., Nelson G.M., Playter R., 2008, BigDog, the rough-terrain quadruped robot, IFAC Proceedings Volumes, 41, 2, 10822-10825.
- 17. Raper R.L., 2004, Agricultural Traffic Impacts on Soil, USDA-ARS-National Soil Dynamics Laboratory.
- 18. Roldán J.J., del Cerro J., Garzón-Ramos D., Garcia-Aunon P., Garzón M., de León J., Barrientos A., 2018, Robots in agriculture: state of art and practical experiences, [In] Service Robots, Edited by A.J.R. Neves.
- 19. Sarami S., 2009, Developement and Evaluation of a Semi-Active Suspension System for Full Suspension Tractors, Berlin.
- 20. Shah R., Ozcelik S., Challoo R., 2012, Design of a highly maneuverable mobile robot, Procedia Computer Science, 12, 170-175.
- 21. Shamshiri R.R., et al., 2018, Research and development in agricultural robotics: A perspective of digital farming, International Journal of Agricultural and Biological Engineering, 11, 4, 1-11.
- 22. Sperzyński P., Szrek J., Muraszkowski A., 2018, Simulation research of a mobile robot walking on stairs (in Polish), Modelowanie Inżynierskie, 67.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c16f68d9-156a-4029-aeef-a421cb44f685
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.