PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexural behavior of functionally graded concrete beams with different patterns

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flexural behavior of functionally graded concrete (FGC) beams was experimentally investigated. Fourteen sets of beams, including full depth (FD) fiber-reinforced concrete (FRC) and FGC with different patterns and fiber volume fractions (Vf%), were investigated under three-point bending. These patterns consisted of three layers with a constant middle part of lightweight concrete. The upper layer in the compression zone was either normal strength concrete or FRC having different Vf%. The lower layer in the tension zone was made from either FD FRC has the same Vf% or functionally graded FRC. The fibers used were hooked end steel fibers with Vf% of 0.5, 1.0, and 1.5%. The experimental results were also analyzed numerically and analytically. The experimental results showed that the flexural strength of FGC patterns ranged between 94 and 100% from that of FD FRC beams. However, their toughness indices ranged between 49 and 93% of the corresponding value of FD FRC beams. These ratios depend on Vf% and the presence of fibers in the compression zone. The effect of Vf% is more obvious in the descending part of the load–deflection curve than the ascending part due to the presence of fibers bridging phenomenon following the maximum load. Vf% is more pronounced in the descending portion in all FGC patterns than in the FD FRC beams. There is a good agreement between the experimental results and those predicted by analytical and numerical models.
Rocznik
Strony
568--583
Opis fizyczny
Bibliogr. 53 poz., rys., wykr.
Twórcy
autor
  • Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
  • Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
autor
  • Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
  • Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
autor
  • Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
Bibliografia
  • [1] Olmedo FI, Valivonis J, Cobo A. Experimental study of multilayer beams of lightweight concrete and normal concrete. Procedia Eng. 2017;172:808–15. ttps://doi.org/10.1016/j.proeng.2017.02.128.
  • [2] Al-Tersawy SH, El-Sadany RA, Sallam HEM. Long-term behavior of normal weight concrete containing hybrid nanoparticles subjected to gamma radiation. Arch Civil Mech Eng. 2021;21(9):1–18. https://doi.org/10.1007/s43452-020-00157-4.
  • [3] Al-Tersawy SH, El-Sadany RA, Sallam HEM. Experimental gamma-ray attenuation and theoretical optimization of barite concrete mixtures with nanomaterials against neutrons and gamma rays. Constr Build Mater. 2021;289: 123190. https://doi.org/10.1016/j.conbuildmat.2021.123190.
  • [4] Mastali M, Naghibdehi MG, Naghipour M, Rabiee SM. Experimental assessment of functionally graded reinforced concrete (FGRC) slabs under drop weight and projectile impacts. Constr Build Mater. 2015;95:296–311. https://doi.org/10.1016/j.conbuildmat.2015.07.153.
  • [5] Lai J, Wang H, Yang H, Zheng X, Wang Q. Dynamic properties and SPH simulation of functionally graded cementitious composite subjected to repeated penetration. Constr Build Mater.2017;146:54–65. https://doi.org/10.1016/j.conbuildmat.2017.04.023.
  • [6] Quek ST, Lin VWJ, Maalej M. Development of functionally-graded cementitious panel against high-velocity small projectile impact. Int J Impact Eng. 2010;37:928–41. https://doi.org/10.1016/j.ijimpeng.2010.02.002.
  • [7] Kovaleva D, Gericke O, Kappes J, Tomovic I, Sobek W. Rosenstein pavilion: design and structural analysis of a functionally graded concrete shell. Structures. 2019;18:91–101. https://doi.org/10.1016/j.istruc.2018.11.007.
  • [8] Toader N, Sobek W, Nickel KG. Energy absorption in functionally graded concrete bioinspired by sea urchin spines. J Bionic Eng. 2017;14:369–78. https://doi.org/10.1016/S1672-6529(16)60405-5.
  • [9] Bai Z, Liu Y, Yang J, He S. Exploring the dynamic response and energy dissipation capacity of functionally graded EPS concrete.Constr Build Mater. 2019;227:116574. https://doi.org/10.1016/j.conbuildmat.2019.07.300.
  • [10] Zhang M, Li M, Shen Y, Zhang J. Isogeometric shape optimization of high RCC gravity dams with functionally graded partition structure considering hydraulic fracturing. Eng Struct.2019;179:341–52. https://doi.org/10.1016/j.engstruct.2018.11.005.
  • [11] Pietras D, Sadowski T. A numerical model for description of mechanical behaviour of a functionally graded autoclaved aerated concrete created on the basis of experimental results for homogenous autoclaved aerated concretes with different porosities. Constr Build Mater. 2019;204:839–48. https://doi.org/10.1016/j.conbuildmat.2019.01.189.
  • [12] Ma B, Zou D, Xu L. Manufacturing technique and performance of functionally graded concrete segment in shield tunnel. Front Archit Civ Eng China. 2009;3(1):101–4. https://doi.org/10.1007/s11709-009-0011-8.
  • [13] Sridhar R, Prasad DR. Damage assessment of functionally graded reinforced concrete beams using hybrid fiber engineered cementitious composites. Structures. 2019;20:832–47. https://doi.org/10.1016/j.istruc.2019.07.002.
  • [14] Shen B, Hubler M, Paulino GH, Struble LJ. Manufacturing and mechanical testing of a new functionally graded fiber reinforced cement composite. AIP Conf Proc. 2008;973:519–24. https://doi.org/10.1063/1.2896832.
  • [15] Wen XD, Tu JL, Gan WZ. Durability protection of the functionally graded structure concrete in the splash zone. Constr Build Mater. 2013;41:246–51. https://doi.org/10.1016/j.conbuildmat.2012.11.119.
  • [16] Maalej M, Ahmed SFU, Paramasivam P. Corrosion durability and structural response of functionally-graded concrete beams. J Adv Concr Tech. 2003;1:307–16. https://doi.org/10.3151/jact.1.307.
  • [17] Liu X, Yan M, Galobardes I, Sikora K. Assessing the potential of functionally graded concrete using fibre reinforced and recycled aggregate concrete. Constr Build Mater. 2018;171:793–801. https://doi.org/10.1016/j.conbuildmat.2018.03.202.
  • [18] Bajaj K, Shrivastava Y, Dhoke P. Experimental study of functionally graded beam with fly ash. J Inst Eng India Ser A.2013;94(4):219–27. https://doi.org/10.1007/s40030-014-0057-z.
  • [19] Roesler J, Paulino G, Gaedicke C, Bordelon A, Park K. Fracture behavior of functionally graded concrete materials for rigid pavements. Transp Res Rec. 2007;2037:40–9.
  • [20] Park K, Paulino GH, Roesler J. Cohesive fracture model for functionally graded fiber reinforced concrete. Cem Concr Res.2010;40:956–65. https://doi.org/10.1016/j.cemconres.2010.02.004.
  • [21] Mastali M, Mastali M, Abdollahnejad Z, Ghasemi Naghibdehi M, Sharbatdar MK. Numerical evaluations of functionally graded RC slabs. Chin J Eng. 2014. https://doi.org/10.1155/2014/768956.
  • [22] Li Q, Xu S. Experimental investigation and analysis on flexural performance of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites. Sci China Ser E-Tech Sci. 2009;52(6):1648–64. https://doi.org/10.1007/s11431-009-0161-x.
  • [23] BRITISH STANDARD BS 882:1992, Specification for aggregates from natural sources for concrete, BSI Standards Publication.London, (2002). https://shop.bsigroup.com/products/specification-for-aggregates-fromnatural-sources-for-concrete-1.
  • [24] Egyptian Organization for Standards & Quality ESS 4756-1:2013, Cement part (1) composition, specifications and conformity criteria for common cements, Cairo, Egypt, (2013). https://www.eos.org.eg/en/standard/12097.
  • [25] ASTM C494, C494M-19. Standard specification for chemical admixtures for concrete. West Conshohocken: ASTM International; 2019.
  • [26] ASTM A820, A820M-16. Standard specification for steel fibers for fiber-reinforced concrete. West Conshohocken: ASTM International; 2016.
  • [27] BS EN 12390-3:2019, Testing hardened concrete- Compressive strength of test specimens, BSI Standards Publication. London, (2019). https://shop.bsigroup.com/products/testing-hardened-concrete-compressive-strengthof-test-specimens-1.
  • [28] 12390-6:2009, Testing hardened concrete - Tensile splitting strength of test specimens, BSI Standards Publication. London, (2009). https://shop.bsigroup.com/products/testing-hardened-concrete-tensile-splittingstrength-of-test-specimens.
  • [29] 12390-5:2019, Testing hardened concrete- Flexural Strength of Test Specimens, BSI Standards Publication. London, (2019). https://shop.bsigroup.com/products/testing-hardened-concrete-flexural-strength-of-test-specimens-1.
  • [30] Abbass W, Khan MI, Mourad S. Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Constr Build Mater. 2018;168:556–69. https://doi.org/10.1016/j.conbuildmat.2018.02.164.
  • [31] Khaloo AR, Kim N. Mechanical properties of normal to high-strength steel fiber-reinforced. Cem Concr Aggr. 1996;2(18):92–7.https://doi.org/10.1520/CCA10156J.
  • [32] Song PS, Hwang S. Mechanical properties of high-strength steel fiber-reinforced concrete. Constr Build Mater. 2004;18:669–73.https://doi.org/10.1016/j.conbuildmat.2004.04.027.
  • [33] Seleem MH, Badawy AA, Mohamed SS. Performance of FRC at different levels of concrete strength. Int J Civil Eng Technol (IJCIET). 2019;10(11):29–38.
  • [34] Mobaraki M, Osman SA, Sallam HEM. Effect of RAP content on flexural behavior and fracture toughness of flexible pavement. Latin Am J Solids Struct. 2019;16(3): e177. https://doi.org/10.1590/1679-78255516.
  • [35] Ricardo C, Xingzi L, Isaac G. Parametric study of functionally graded concretes incorporating steel fibres and recycled aggregates. Constr Build Mater. 2020;242:118186. https://doi.org/10.1016/j.conbuildmat.2020.118186.
  • [36] Teng S, Afroughsabet V, Ostertag C. Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete. Constr Build Mater. 2018;182:504–15. https://doi.org/10.1016/j.conbuildmat.2018.06.158.
  • [37] Liu F, Ding W, Qiao Y. Experimental investigation on the flexural behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder. Constr Build Mater. 2019. https://doi.org/10.1016/j.conbuildmat.2019.116706.
  • [38] Moghadam AS, Omidinasab F. Assessment of hybrid FRSC cementitious composite with emphasis on flexural performance of functionally graded slabs. Constr Build Mater. 2020;250: 118904.https://doi.org/10.1016/j.conbuildmat.2020.118904.
  • [39] Mosallam SJ, Behbahani HP, Shahpari M, Abaeian R. The effect of carbon nanotubes on mechanical properties of structural light-weight concrete using LECA aggregates. Structures. 2021. https://doi.org/10.1016/j.istruc.2021.09.003 (In Press).
  • [40] ACI 213R–14. Guide for structural lightweight-aggregate concrete. USA: American Concrete Institute; 2014. p. 53 (ISBN:978-0-87031-897-9).
  • [41] Tomičić I. Analysis of lightweight aggregate concrete beams. GRAĐEVINAR. 2012;64(10):817–23. https://doi.org/10.14256/JCE.782.2011.
  • [42] Bacinskas D, Rumsys D, Sokolov A, Kaklauskas G. Deformation analysis of reinforced beams made of lightweight aggregate concrete. Materials. 2020;13:20. https://doi.org/10.3390/ma13010020.
  • [43] Floyd RW, Bymaster J, Dang CN, Hale WM. Development length of prestressing strands cast in lightweight self-consolidating concrete. Eng Struct. 2021;226: 111393. https://doi.org/10.1016/j.engstruct.2020.111393.
  • [44] Liu H, Elchalakani M, Karrech A, Yehia S, Yang B. High strength flowable lightweight concrete incorporating low C 3 A cement, silica fume, stalite and macro-polyfelin polymer fibres. Constr Build Mater. 2021;281: 122410. https://doi.org/10.1016/j.conbuildmat.2021.122410.
  • [45] Atta M, Abu-Sinna A, Mousa S, Sallam HEM, Abd-Elhady AA. Flexural behavior of functionally graded polymeric composite beams. J Ind Text. 2021. https://doi.org/10.1177/15280837211000365 (In Press).
  • [46] Selmy AI, Abd Elbaky MA, Ghazy MR, Kamel M. Flexural fatigue performance of glass fiber/epoxy step-wise functionally and non-functionally graded composites of different structures.Int Polym Process. 2017;32:298–307. https://doi.org/10.3139/217.3297.
  • [47] Selmy AI, Abd Elbaky MA, Ghazy MR, Kamel M. In-plane shear characteristics of unidirectional glass fiber/epoxy functionally graded (FG) and nonfunctionally graded (NFG) composite laminates with statistical analysis. J Compos Mater. 2015;49:3347–58.https://doi.org/10.1177/0021998314561898.
  • [48] Strojny-Nędza A, Pietrzak K, Gili F, et al. FGM based on copper–alumina composites for brake disc applications. Archiv Civ Mech Eng. 2020;20:83. https://doi.org/10.1007/s43452-020-00079-1.
  • [49] British Standards Institution, Eurocode2: Design of Concrete Structures: Part 1-1: General Rules and Rules for Buildings, vol.BS En 1992. 2004, p. 240, CEN EUROPEAN COMMITTEE FOR STANDARDIZATION, Rue de la Science, 23 B - 1040 Brussels, Belgium.
  • [50] CEB - Comité Euro-international du Béton, CEB-FIP Model Code for Concrete Structures 2010, vol. 65&66, Ernst & Sohn, Lausanne, Switzerland, 2012. ISBN: 978-3-433-03061-5.
  • [51] Carpinteri A, Cadamuro E, Ventura G. Fiber-reinforced concrete in flexure: a cohesive/overlapping crack model application. Mater Struct. 2015;48:235–47. https://doi.org/10.1617/s11527-013-0179-1.
  • [52] Tzejer C, Yiu-Wing M. Flexural behavior of strain-softening solids. Int J Solids Struct. 1989;25:1427–43. https://doi.org/10.1016/0020-7683(89)90110-8.
  • [53] ANSYS, Inc. (2018). ANSYS Release 19.0 Documentation. ANSYS, Inc. Southpointe 2600 ANSYS Drive Canonsburg, PA 15317. http://www.ansys.com.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c16e5a74-f1a7-4097-8bfb-3d62a8c15f0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.